DECISION PAPER

Date: July 18, 2017

Issue:

Emergency environmental cleanup response was required to remove petroleum products found in a drainage easement downstream from the intersection of Matterhorn Lane and Chalet Drive.

Background:

Heavy winter conditions in early 2017 left record snowpack throughout the Tahoe Region, with high temperatures in mid-May that melted snowpack and exposed neighborhood drainage swales. On May 13th, TDA staff responded to a homeowner tip regarding petroleum products that had been seen near the driveway entrance of his home at south end of Chateaux Way, which was reportedly ongoing for the duration of approximately two months. Not knowing the source of the contaminants, Tahoe Donner responded proactively by placing absorbent rolls and pads at affected areas to capture and contain petroleum products seen at that time. Additionally, contact was made with Elements, TSD, Truckee Road Maintenance, and the Police Department to determine if they have related spill records on file, or if a vehicle accident or spill had been reported at that location. Through the week of May 15th, continued high temperatures further receded snow pack off of drainage swales at an accelerated rate, and within the drainage swale below the intersection of Matterhorn Place and Chalet Road, TDA Staff found a source of heavy concentrations of petroleum products adjacent to 11891 Chalet. More project history is included in Information Paper dated May 23, 2017. TDA staff obtained water samples, and continued working with Clean Harbors to provide formal cleanup efforts to minimize further spread of petroleum products found in the area. Water sample results showed that found petroleum products were not coming from the storm water retention pond, which is shared between Town of Truckee and Tahoe Donner Maintenance Facilities. On June 22nd, Lahontan Water Quality Board took water samples and photos, while also reviewing the petroleum products found in drainage easement adjoining residence at 11891 Chalet, which showed signs of oil splatter up along the trunks of the aspen grove, potentially occurring from a container of used motor oil that was stored on driveway, then discharged during winter months from driveway snow plow. On July 3rd, the Homeowner at 11891 Chalet was notified of Tahoe Donner's off-asphalt parking restrictions, and that such parking activity may be associated with discharge of used motor oil (see attached images), and that by discontinuing the use off-asphalt parking area, discharge of petroleum products would be properly contained and not dispersed into the drainage easement and associated Trout Creek watershed. Lahontan thanks Tahoe Donner for their clean-up efforts to-date, and asks that TDA continue cleanup efforts as necessary, then work to obtain reimbursement where applicable. Current costs equal \$21,351, with back-up of all existing and potential contingency expenses attached. And although ongoing investigation findings point to an outside source of waste oil discharge found in the drainage ditch near 11891 Chalet, there is no conclusive evidence to point to one particular source/individual in order to subrogate related cleanup costs, but actual cleanup costs will be credited from insurance proceeds, if any.

DECISION PAPER

Recommendation:

Staff recommends the Board of Directors approve payments to fulfill existing costs associated with emergency environmental cleanup to remove petroleum products found near 11891 Chalet, not to exceed \$21,351, for Hazardous Waste Clean Up in the General Operating Fund, and credited from insurance proceeds, if any.

Prepared By: Sean Connors

Reviewed By: Forrest Huisman

Reviewed By: Michael Salmon Apple 1/30/3017

Board Meeting Date: July 29, 2017

General Manager Approval to place on agenda:

TDA Emergency Cleanup Summary 7/18/2017 **Petroleum Cleanup at Matterhorn and Chalet Drive** Clean Harbors, Invoice 1001869263 \$ 16,176 \$ TDA Labor and Materials, (Trails/Golf/Maintenance Staff) 1,175 \$ 4,000 Holdredge and Kull, Consultant \$ **Existing Sub-Total** 21,351 \$ Clean Harbors removal of contaminated waste and testing 10,000 \$ Further cleanup and testing depending on H&K reporting results 9,000 \$ Potential Agency Fees (NVCO, TOT, Lahontan Water Quality Board) 15,000 \$ **Potential Project Total** 55,351 Contingency (10%) \$ 5,535 \$ Decision Paper 7/29/2017 60,886

INFORMATION

May 23, 2017

Purpose: Update on petroleum product found in drainage easement located downstream of Matterhorn Lane and Chalet Drive.

Background: Heavy winter conditions that began in January of 2017 left record snow pack throughout the Sierra Mountains, and during high temperatures in mid-May, receding snow began exposing neighborhood drainage swales full of running water. On May 13, TDA staff responded to a homeowner tip regarding petroleum products that had been seen near the driveway entrance to his home, near south end of Chateaux Way, which was reportedly ongoing for the duration of approximately two months. Further inspections were made that weekend, including review of conditions downstream and upstream toward the TDA Maintenance Yard, with no sign of cause or source along Chalet Road or adjacent drainage inlets. Absorbent rolls and pads were then installed at all affected areas to capture and contain petroleum products seen at that time. Through the week of May 15, continued high temperatures further receded snow pack off of drainage swales at an accelerated rate, and within the drainage swale between Lot 175, Lot 176, Lot 201, Lot 200, and below the intersection of Matterhorn Place and Chalet Road, Staff found a source that included heavy concentrations of petroleum products.

With approximately half of the effected drainage swale now melted from snow, Tahoe Donner initiated cleanup efforts to all accessible areas, engaging Clean Harbors, Inc. on May 18th and 19th to test for petroleum products, remove and treat affected soils along Chateaux Way, and place additional absorbent rolls and pads to capture and contain all visible petroleum products.

Upon further review, after continued hot weather over the weekend, the existing contaminated area below the intersection of Matterhorn Lane and Chalet Drive was increasingly accessible, so TDA staff coordinated with adjacent neighbors to obtain clearance for foot traffic access and vacuum services within the 20' wide drainage easement, which was performed on May 23rd.

Although the source, or type, of contaminant remains uncertain, Tahoe Donner is obtaining water sample results and will continue to provide cleanup efforts to minimize further spread of the estimated (1) quart of petroleum products found in the area. Additionally, contact is being made into Elements, TSD, Truckee Road Maintenance, and the Police Department to determine if they have related spill records on file, or if a vehicle accident report was reported at that site.

Discussion:

- Current costs to treat, cleanup, and vacuum affected areas are nearing \$8K.
- 2. Projected costs to further remediate, test, and report could exceed another \$10K.

Prepared By: Forrest Huisman, Director of Capital Projects

WASTE MATERIAL PROFILE SHEET

Clean Harbors Profile No. CH1473727

A. GENERAL INFORMAT GENERATOR EPA ID #/F GENERATOR CODE (ASS ADDRESS 14514 Non CUSTOMER CODE (ASS ADDRESS 11509 No	REGISTRATION # signed by Clean Harbon thwoods Boulevard	TA9868 CUST	Truckee STATE OMER NAME: Tahoe	E/PROVINCE CA ZIP/POST PHONE: (530) 582-9630 Donner Homeowners Associa	PHONE: (530) 582-9630 onner Homeowners Association		
B. WASTE DESCRIPTION WASTE DESCRIPTION:	Olly Water						
PROCESS GENERATING	WASTE: Clear	n up of spill residuals	"			_	
IS THIS WASTE CONTAIN	ED IN SMALL PACKAG	ING CONTAINED WITHIN A LARGE	SHIPPING CONTAINER?	ło			
C. PHYSICAL PROPERTI	ES (at 25C or 77F)						
PHYSICAL STATE SOLID WITHOUT FR POWDER MONOLITHIC SOLID LIQUID WITH NO SO LIQUID/SOLID MIXTU	LIDS	76 BT VOLUME (Approx.)	OP 5.00 ODLE 0.00 OTTOM 95.00	VISCOSITY (If liquid present) 1 - 100 (e.g. Water) 101 - 500 (e.g. Motor Oil) 501 - 10,000 (e.g. Molasses)	<u>v</u>	COLOR <u>varies</u>	
% FREE LIQUID		ODOR		> 10,000			
% SETTLED SOLID % TOTAL SUSPENDED SOLID SLUDGE GAS/AEROSOL		NONE MILD STRONG Describe:	BOILING POINT °F (°C) <= 95 (<=35) 95 - 100 (35-38) 101 - 129 (38-54) >= 130 (>54)	MELTING POINT °F (°C) < 140 (<60) 140-200 (60-93) > 200 (>93)	CARBON C	c= 1%	
FLASH POINT °F (°C)	pH	SPECIFIC GRAVITY	ASH	BTU/LB (MJ/kg)			
< 73 (<23)	<= 2	< 0.8 (e.g. Gasoline)			1.6)		
73 - 100 (23-38)	2.1 - 6.9	0 8-1.0 (e.g. Ethanol)	< 0.1	2,000-5,000	0 (4,6-11,6)		
101 -140 (38-60)	7 (Neutral)	√ 1.0 (e.g. Water)	0.1 - 1.0	Unknown	00 (11.6-23.2	2)	
141 -200 (60-93)	7.1 - 12.4	1.0-1.2 (e.g. Antifreeze)	1.1 - 5.0	> 10,000 (>		,	
> 200 (>93)	>= 12.5	> 1.2 (e.g. Methylene Chloride)	5.1 - 20.0	Actual:			
D. COMPOSITION (List)	he complete compositio	n of the waste, include any linert comp	onents and/or debris. Ranges for		le, if a trade :	name is used	J,
CHEMICAL		(analtriumdde nau ton oh nae		MIN -		MAX UOM	_
DIESEL							1
MOTOR OIL				1.0000000 -	- 5.0000		
			• • • • • • • • • • • • • • • • • • • •	1.0000000 -	- 5.0000		
WATER				95.0000000 -	- 100.0000	000 %	
DOES THIS WASTE CON' >12" LONG, METAL REINI PIECES OF CONCRETE >	FORCED HOSE >12" L(IGE METAL DEBRIS OR OTHER LAR DNG, METAL WIRE >12" LONG, MET	GE OBJECTS (EX., METAL PLA AL VALVES, PIPE FITTINGS, C	ATE OR PIPING >1/4" THICK OR CONCRETE REINFORCING BAR OR	YES	NO	
If yes, describe, inclu	ding dimensions;						
DOES THIS WASTE COM	ITAIN ANY METALS IN	POWDERED OR OTHER FINELY DI	VIDED FORM?		YES	₩ NO	
	ICAL WASTE, PATHOL	ITACTED ANY OF THE FOLLOWING; LOGICAL WASTE, HUMAN OR ANIM			YES	₩ NO	
		ther infectious nor does it contain any d lect the answer below that applies:	organism known to be a threat to	human health. This certification is			
The waste was neve	r exposed to potentially	infectious material.			YES	NO	
Chemical disinfection	or some other form of :	sterilization has been applied to the wa	iste.		YES	NO	
		THE CLEAN HARBORS BATTERY P			YES	NO	
I ACKNOWLEDGE THAT	MY FRIABLE ASSEST	OS WASTE IS DOUBLE BAGGED AN	D WETTED.		YES	NO	
SPECIFY THE SOURCE WASTE.				DDE ASSOCIATED WITH THE WAS			

E. CONSTITUENTS

Are	these	values	based	no	testing	OF	knowledge?
-----	-------	--------	-------	----	---------	----	------------

✓ Knowledge

REGULATORY

Testing

If based on knowledge, please describe in detail, the rationale applied to identify and characterize the waste material. Please include reference to Material Safety Data Sheets (MSDS) when applicable. Include the chemical or trade-name represented by the MSDS, and or detailed process or operating procedures which generate the waste

Generator Knowledge of process generating wasts

RCRA REGULATED METALS

Please indicate which constituents below apply. Concentrations must be entered when applicable to assist in accurate review and expedited approval of your waste profile. Please note that the total regulated metals and other constituents sections require answers.

TOTAL

MOU

NOT APPLICABLE

TCLP

North	REGOLATED INILIALS	LEVEL (mg/l)	mg/l	TOTAL	OOM	NOT APPLICABLE	
D004	ARSENIC	5,0				<u> </u>	
D005	BARIUM	100.0		• • • • • • • • • • • • • • • • • • • •		V	
D006	CADMIUM	1,0				<u></u>	
D007	CHROMIUM	5.0				5	
D008	LEAD	5.0					
D009	MERCURY	0.2				·····································	
D010	SELENIUM	1,0					
D011	SILVER	5.0			• • • • • • • • •		
	VOLATILE COMPOUNDS	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	OTHER CONSTITUENTS		MAX UOM	NOT
D018	BENZENE	0.5			.,	MIAA GOM	NOT APPLICABLE
D019	CARBON TETRACHLORIDE	0.5		BROMINE			V
D021	CHLOROBENZENE	100.0		CHLORINE		• • • • • • • • • • • • • • • • • • • •	<u> </u>
D022	CHLOROFORM	60	*******	FLUORINE			
D028	1,2-DICHLOROETHANE	0.5		IODINE			
D029	1,1-DICHLOROETHYLENE	0.7		SULFUR			<u>-</u>
D035	METHYL ETHYL KETONE	200.0		POTASSIUM			<u></u>
D039	TETRACHLOROETHYLENE	0.7	********	SODIUM			····· 🗹
D040	TRICHLOROETHYLENE	0.5	********	AMMONIA	• • • • • • • • •		V
D043	VINYL CHLORIDE	0.2		CYANIDE AMENABLE			<u> </u>
	SEMI-VOLATILE COMPOUNDS	5	•••••	CYANIDE REACTIVE			<u> </u>
D023	o-CRESOL	200.0		CYANIDE TOTAL			<u> </u>
D024	m-CRESOL	200.0		SULFIDE REACTIVE			····· 🔁 · · · · ·
D025	p-CRESOL	200.0	*********	HOCs		PCBs	
D025	CRESOL (TOTAL)	200.0		_		95.50	
D027	1,4-DICHLOROBENZENE	7.5		✓ NONE < 1000 PPM		NONE	
D030	2,4-DINITROTOLUENE	0.13		>= 1000 PPM		< 50 PPM >=50 PPM	
D032	HEXACHLOROBENZENE	0.13		100011111			
D033	HEXACHLOROBUTADIENE	0.5				WASTE REGULATED	
D034	HEXACHLOROETHANE	3.0				CFR 7617	
D036	NITROBENZENE	2.0		1		YES	NO
D037	PENTACHLOROPHENOL	100 0					
D038	PYRIDINE	5.0					
D041	2,4,5-TRICHLOROPHENOL	400.0					
D042	2,4,6-TRICHLOROPHENOL	2.0					
	PESTICIDES AND HERBICIDE	S					
D012	ENDRIN	0.02					
D013	LINDANE	0.4					
D014	METHOXYCHLOR	10.0					
D015	TOXAPHENE	0.5					
D016	2,4·D	10.0					
D017	2,4,5-TP (SILVEX)	1.0					
D020	CHLORDANE	0.03					
D031	HEPTACHLOR (AND ITS EPOXIDE)	0.008					

ADDITIONAL HAZARDS

DOES THIS WASTE HAVE ANY UNDISCLOSED HAZARDS OR PRIOR INCIDENTS ASSOCIATED WITH IT, WHICH COULD AFFECT THE WAY IT SHOULD BE HANDLED?

F. REGUL YES		NO	USEPA HAZARDOUS WASTE?	
✓ YES	;	NO	DO ANY STATE WASTE CODES APPLY?	\Box
			223	
	_	7 1	Texas Waste Code	
YES		<u>√</u> NO	DO ANY CANADIAN PROVINCIAL WASTE CODES APPLY?	_
YES	. [NO N	IS THIS WASTE PROHIBITED FROM LAND DISPOSAL WITHOUT FURTHER TREATMENT PER 40 CFR PART 268?	_
			LDR CATEGORY: VARIANCE INFO:	
YES		Z NO	IS THIS A UNIVERSAL WASTE?	
YES	· •	Z NO	IS THE GENERATOR OF THE WASTE CLASSIFIED AS VERY SMALL QUANTITY GENERATOR (VSQG) OR A STATE EQUIVALENT DESIGNATION?	
YES	i	NO	IS THIS MATERIAL GOING TO BE MANAGED AS A RCRA EXEMPT COMMERCIAL PRODUCT, WHICH IS FUEL (40 CFR 261.2 (C)(2)(II))?	
YES	<u> </u>	NO N	DOES TREATMENT OF THIS WASTE GENERATE A F006 OR F019 SLUDGE?	
YES	_	NO	IS THIS WASTE STREAM SUBJECT TO THE INORGANIC METAL BEARING WASTE PROHIBITION FOUND AT 40 CFR 268.3(C)?	
YES	_	NO NO	DOES THIS WASTE CONTAIN VOC'S IN CONCENTRATIONS >=500 PPM?	
YES	_	NO	DOES THE WASTE CONTAIN GREATER THAN 20% OF ORGANIC CONSTITUENTS WITH A VAPOR PRESSURE >= .3KPA (044 PSIA)?	
YES		✓ NO	DOES THIS WASTE CONTAIN AN ORGANIC CONSTITUENT WHICH IN ITS PURE FORM HAS A VAPOR PRESSURE > 77 KPA (11.2 PSIA)?	
YES		≥ NO	IS THIS CERCLA REGULATED (SUPERFUND) WASTE?	
YES	•	∠ NO	IS THE WASTE SUBJECT TO ONE OF THE FOLLOWING NESHAP RULES?	
			Hazardous Organic NESHAP (HON) rule (subpart G) Pharmaceuticals production (subpart GGG)	
YES		NO 	IF THIS IS A US EPA HAZARDOUS WASTE, DOES THIS WASTE STREAM CONTAIN BENZENE?	
	YE	15	NO Does the waste stream come from a facility with one of the SIC codes listed under benzene NESHAP or is this waste regulated under the benzene NESHAP rules because the original source of the waste is from a chemical manufacturing, coke by-product recovery, or petroleum refinery process	
		ES	NO Is the generating source of this waste stream a facility with Total Annual Benzane (TAB) >10 Mg/year?	
			e TAB quantity for your facility? Megagram/year (1 Mg = 2,200 lbs)	
			for this determination is: Knowledge of the Waste Or Test Data Knowledge Testing he knowledge:	
G DO			MATION	
			IPPING NAME:	
			OUS, NON D.O.T. REGULATED LIQUID, (OILY WATER)	
H. TRAN	SPOR'	TATION	REQUIREMENTS	
ESTIMAT	ED SH	IIPMENT	FREQUENCY ONE TIME WEEKLY MONTHLY QUARTERLY YEARLY OTHER	
			ONTAINERIZED BULK SOLID	
<u>0-0</u> STORAG	,		RS/SHIPMENT GALLONS/SHIPMENT. 100.00 Min -5000.00 GAL. SHIPMENT UOM. TON YARE	D
CONTAIN	IER TY	PE:	Max TONS/YARDS/SHIPMENT: <u>O Min - O Max</u>	
	TURIC YA	E TOTE TA	NK BOXICARTONICASE DRUM	
	THER		DRUM SQE:	
I. SPEC	IAL RE	QUEST		_
СОМА	AENTS (OR REOL	KESTS:	
GENERAT	ror's c	ERTIFIC.	нотть	
sumples s	ubmitte	d are repri	to execute this document as an authorized agent. I hereby certify that all information submitted in this and attached documents is correct to the best of my knowledge,) also certify that assentitive of the actual waste if Clean Harbors discovers a discrepancy during the approval process, Generator grants Clean Harbors the authority to amend the profile, as Clean Harbors.	
Du	be	hat	of Taken Donner Association	
d	штно	RIZED	SCHOOL NAME (PRINT) TITLE DATE SCHOOL THINK ROSCHOLD DOUGH AROL 7/13/17	
(4)	M	IKO	suged investigate southy kall +113/12	

WASTE MATERIAL PROFILE SHEET

Clean Harbors Profile No. CH1473727

A. GENERAL INFORMA' GENERATOR EPA ID ## GENERATOR CODE (AS ADDRESS 14514 Nor CUSTOMER CODE (ASSI ADDRESS 11509 No	REGISTRATION # signed by Clean Harbors thwoods Boulevard	TA9868 C	CITY	Truckee MER NAME:	STATE/P	ROVINCE PHONE: (5: Jonner Hom	30) 582-963 leowners A:	/POSTAL 0	CODE	9616 9616	
B. WASTE DESCRIPTION WASTE DESCRIPTION:	Oily Water	W II							<u>.</u>		
PROCESS GENERATING	WASTE: Clean	up of spill residuals					~			_	
IS THIS WASTE CONTAIN	ED IN SMALL PACKAG	ING CONTAINED WITHIN A LAF	RGER S	HIPPING CONTAINE	R7 No						
C. PHYSICAL PROPERTI	IES (at 25C or 77F)										
PHYSICAL STATE SOLID WITHOUT FREE LIQUID POWDER MONOLITHIC SOLID LIQUID WITH NO SOLIDS LIQUID/SOLID MIXTURE		NUMBER OF PHASES/LAYI 1	TOP MIDE BOT			101 - 500	0 (e.g. Motor (000 (e.g. Mot	OH)		LOR aries	
% FREE LIQUID % SETTLED SOLID % TOTAL SUSPENDE SLUDGE	D SOLID	ODOR NONE MILD		BOILING POINT °F (' '	MELTING PO	DINT *F (*C)		OTAL ORG		P
GAS/AEROSOL		STRONG Describe:		95 - 100 (3 101 - 129 (>= 130 (>5	38-54)	140-	200 (60-93) 0 (>93)		₩ 1.	: 1% 9% : 10%	
EL ARLI DOMETEC MOL		SPECIFIC GRAVITY					1				
FLASH POINT °F (°C) < 73 (<23)	ρH <= 2	< 0.8 (e.g. Gasoline)	- 1	ASH			BTU/LB (M				
73 - 100 (23-38)	2.1 - 6.9	0 8-1.0 (e.g. Ethanol)	ŀ	< 0.1	>	20		000 (<4.6) 10-5,000 (4			
101 -140 (38-60)	7 (Neutral)	1.0 (e.g. Water)	- 1	0.1 - 1.0	A n	nknown		17	•		
141 -200 (60-93) 7.1 - 12.4 1.0-1.2 (e.g. Antifreeze) > 10.000 (>23.2)								,			
> 200 (>93)	>= 12.5	> 1.2 (e.g. Methylene Chic	oride)	5.1 - 20.0			Actual:	•	,		
D. COMPOSITION (List)	the complete composition	n of the waste, include any inert o	сопроле	ents and/or debris. Rar	nges for Inc	dividual comp	Onents are ac	ceptable.	If a trade r	ame l	s used,
CHEMICAL		Ed Ha Bal Disa Honduraliani					MIN	_	м	AX	UOM
DIESEL MOTOR OIL WATER							1.0000000 1.0000000 95.000000		5.00000 5.00000	000	% % %
DOES THIS WASTE CON >12" LONG, METAL REIN PIECES OF CONCRETE >	FORCED HOSE >12° LC	GE METAL DEBRIS OR OTHER DNG, METAL WIRE >12" LONG,	LARGE METAL	OBJECTS (EX., MET. VALVES, PIPE FITTIN	AL PLATE NGS, CON	OR PIPING : CRETE REIN	>1/4" THICK (IFORCING B/	OR AR OR	YES		NO
If yes, describe, Inclu	iding dimensions.										
DOES THIS WASTE CO	YTAIN ANY METALS IN	POWDERED OR OTHER FINEL	LY DIVID	DED FORM?					YES	V	NO
DOES THIS WASTE CO FLUIDS, MICROBIOLOG POTENTIALLY INFECTION	RICAL WASTE, PATHOL	TACTED ANY OF THE FOLLOW OGICAL WASTE, HUMAN OR A	VING; AN ANIMAL I	NIMAL WASTES, HUM DERIVED SERUMS O	IAN BLOO IR PROTE	D, BLOOD PI INS OR ANY	RODUCTS, B OTHER	ODY	YES	•	NO
		her infectious nor does it contain act the answer below that applies		anism known to be a th	hreat to hu	man health. 1	This certification	ei no			
The waste was neve	r exposed to potentially i	nfectious material.							YES		NO
		sterilization has been applied to the							YES		NO
I ACKNOWLEDGE THAT	THIS PROFILE MEETS	THE CLEAN HARBORS BATTE	RY PAC	KAGING REQUIREM	ENTS.				YES		NO
I ACKNOWLEDGE THAT	MY FRIABLE ASBESTO	DS WASTE IS DOUBLE BAGGE	D AND V	WETTED					YES		NO
SPECIFY THE SOURCE WASTE.	CODE ASSOCIATED W	ITH THE G32		SPECIFY THE FO	ORM CODE	E ASSOCIATI	ED WITH THE	WASTE.	W101		

E. CONSTITUENTS

Are these values based on testing or knowledge?	V	Knowledge	Testin
---	---	-----------	--------

If based on knowledge, please describe in detail, the rationale applied to identify and characterize the waste material. Please include reference to Material Safety Data Sheets (MSDS) when applicable. Include the chemical or trade-name represented by the MSDS, and or detailed process or operating procedures which generate the waste

Generator Knowledge of process generating waste

Please indicate which constituents below apply. Concentrations must be entered when applicable to assist in accurate review and expedited approval of your waste profile. Please note that the total regulated metals and other constituents sections require answers.

RCRA	REGULATED METALS	REGULATORY LEVEL (mg/l)	TCLP mg/l	TOTAL	UOM	NOT APPLICAB	LE		
D004	ARSENIC	5.0				v.			
D005	BARIUM	100.0				[V]			
D006	CADMIUM	1.0			• • • • • • • •	<u>-</u>			
D007	CHROMIUM	5.0			• • • • • • •				
D008	LEAD	5.0		*****************		······································			
D009	MERCURY	0.2		•••••••••••••••••••••••••••••••••••••••	• • • • • • • • • • • • • • • • • • • •				
D010	SELENIUM	1.0	• • • • • • • •		• • • • • • •	-			
D011	SILVER	5.0							
		***********	• • • • • • • •			V			
5049	VOLATILE COMPOUNDS			OTHER CONSTITUENTS	S	MAX U	MO	NOT	
D018	BENZENE	0,5		- Charles				APPLICA	BLE
D019	CARSON TETRACHLORIDE	0.5		BROMINE				<u> </u>	
D021	CHLOROSENZENE	100.0		CHLORINE				Q	
D022	CHLOROFORM	60		FLUORINE				[V]	
D028	1,2-DICHLOROETHANE	05		IODINE		******		v	
D029	1,1-DICHLOROETHYLENE	0.7		SULFUR				<u> </u>	
D035	METHYL ETHYL KETONE	200.0	7000	POTASSIUM				V	••••
D039	TETRACHLOROETHYLENE	0.7	*******	SODIUM				<u> </u>	
D040	TRICHLOROETHYLENE	05	• • • • • • • •	AMMONIA				লৈ '	
D043	VINYL CHLORIDE	0.2		CYANIDE AMENABLE		***********		···· 🛱 · ·	
••••••	SEMI-VOLATILE COMPOUN!	os		CYANIDE REACTIVE		*************		<u>P</u>	
D023	o-CRESOL	200 0		CYANIDE TOTAL		************	*	···· 🕍 ·	• • • • •
D024	m-CRESOL	200 0	• • • • • • • • •	SULFIDE REACTIVE		•••••		⊠	
D025	p-CRESOL	200.0	• • • • • • • •					<u> </u>	
D026	CRESOL (TOTAL)	200.0		HOCs		PCBs			
D027	1,4-DICHLOROBENZENE			NONE		NONE			
D030		7.5		< 1000 PPM		< 50 PPM			
D032	2,4-DINITROTOLUENE	0.13		>= 1000 PPM		>=50 PPM			
	HEXACHLOROBENZENE	0.13				IF PCBS ARE PE	RESENT I	STHE	
D033	HEXACHLOROBUTADIENE	0.5				WASTE REGUL	ATED BY	TSCA 40	
D034	HEXACHLOROETHANE	3.0				CFR 7617			
D036	NITROBENZENE	2.0		1		YES	•	NO	
D037	PENTACHLOROPHENOL	100.0							
D038	PYRIDINE	5.0							
D041	2,4,5-TRICHLOROPHENOL	400.0							
D042	2.4,6-TRICHLOROPHENOL	2.0							
	PESTICIDES AND HERBICIDE	ES							
D012	ENDRIN	0.02							
D013	LINDANE	0.4	• • • • • • • • •						
D014	METHOXYCHLOR	10.0							
D015	TOXAPHENE	0.5							
D016	2,4-D	10.0							
D017	2,4,5-TP (SILVEX)	1.0							
D020	CHLORDANE	0.03							
D031									
******	HEPTACHLOR (AND ITS EPOXIDI	E) 0.008							

F. REGUL	.ATORY	STATI	us de la companya de
YES		NO	USEPA HAZARDOUS WASTE?
YES	i	NQ	DO ANY STATE WASTE CODES APPLY?
			223
			Texas Waste Code
YES	<u> </u>	NO	DO ANY CANADIAN PROVINCIAL WASTE CODES APPLY?
YES	V	NO	IS THIS WASTE PROHIBITED FROM LAND DISPOSAL WITHOUT FURTHER TREATMENT PER 40 CFR PART 268?
			LDR CATEGORY: VARIANCE INFO: Not subject to LDR
YES	V	NO	IS THIS A UNIVERSAL WASTE?
YES		NO	IS THE GENERATOR OF THE WASTE CLASSIFIED AS VERY SMALL QUANTITY GENERATOR (VSQG) OR A STATE EQUIVALENT DESIGNATION?
YES	i	NO	IS THIS MATERIAL GOING TO BE MANAGED AS A RCRA EXEMPT COMMERCIAL PRODUCT, WHICH IS FUEL (40 CFR 261.2 (C)(2)(II))?
YES		NO	DOES TREATMENT OF THIS WASTE GENERATE A F006 OR F019 SLUDGE?
YES	i	NO	IS THIS WASTE STREAM SUBJECT TO THE INORGANIC METAL BEARING WASTE PROHIBITION FOUND AT 40 CFR 268.3(C)?
YES	Y	NO	DOES THIS WASTE CONTAIN VOC'S IN CONCENTRATIONS >=500 PPM?
YES	i	NO	DOES THE WASTE CONTAIN GREATER THAN 20% OF ORGANIC CONSTITUENTS WITH A VAPOR PRESSURE >= 3KPA (044 PSIA)?
YES		NO	DOES THIS WASTE CONTAIN AN ORGANIC CONSTITUENT WHICH IN ITS PURE FORM HAS A VAPOR PRESSURE > 77 KPA (11.2 PSIA)?
YES		NO	IS THIS CERCLA REGULATED (SUPERFUND) WASTE?
YES		NO	IS THE WASTE SUBJECT TO ONE OF THE FOLLOWING NESHAP RULES?
			Hazardous Organic NESHAP (HON) rule (subpart G) Pharmaceuticals production (subpart GGG)
YES	,	NO	IF THIS IS A US EPA HAZARDOUS WASTE, DOES THIS WASTE STREAM CONTAIN BENZENE?
	YES	i	NO Does the waste stream come from a facility with one of the SIC codes tisted under benzane NESHAP or is this waste regulated under the benzane NESHAP rules because the original source of the waste is from a chemical manufacturing, coke by-product recovery, or petroleum refinery process?
	YES	ì	NO Is the generating source of this waste stream a facility with Total Annual Benzene (TAB) >10 Mg/year?
	Wha	at is the	TAB quantity for your facility? Megagram/year (1 Mg = 2,200 lbs)
	The	basis l	or this determination is: Knowledge of the Waste Or Test Data Knowledge Testing
	Des	cribe th	e knowledge ;
G. DQ	T/TDG I	NFORI	MATION
			PPING NAME:
N	ON HA	ZARD	DUS, NON D.O.T. REGULATED LIQUID, (OILY WATER)
			REQUIREMENTS FREQUENCY ONE TIME WEEKLY MONTHLY QUARTERLY YEARLY OTHER
		CC	NTAINERIZED BULK LIQUID BULK SOLID
0-0			GALLONS/SHIPMENT 100.00 Min -5000.00 GAL SHIPMENT UOM: TON YARD
STORAG			Max TONS/YARDS/SHIPMENT: D Min - D Max
F	PORTABLE	TOTE TA	IK BOXICARTONICASE
	CUBIC YAR	вох	DRUM
	OTHER		DRUM SIZE:
I. SPEC	IAL REQ	UEST	
COMA	IENTS OF	REQU	ESTS.
GENERAT	OR'S CE	RTIFICA	TION
I certify the	et I am au	horzed	to execute this document as an authorized agent. I hereby certify that all information submitted in this and attached documents is correct to the best of my knowledge, I also certify that any
a seigmas	ubmitted i	ite tepte	sertative of the actual waste if Clean Harbors discovers a discrepancy during the approval process. Generator grants Clean Harbors the authority to amend the profile les Clean Harbors the discrepancy.
Ou	bell	al	of Taken Donner Association
1	UTHOR	ZED	GNATURE NAME (PRINT) TITLE DATE
(1)	all	Ko.	sufed their kesented bournakou 7/13/17

INVOICE Invoice No 1001869263

REMIT TO:

Clean Harbors Env. Services PO Box 3442 Boston, MA 02241-3442

EIN: 04-2698999

SOLD TO: Annie Rosenfeld Tahoe Donner Homeowners Association 11509 Northwoods Boulevard Truckee, CA 96161 - 0000 OFFICE:

Clean Harbors Environmental Service, Inc. 191 Coney Island Drive

191 Coney Island Drive Sparks, NV 89431 (775) 331-9400

If you have any questions regarding this invoice, please contact your customer service representative at the telephone number listed above

JOB SITE/GENERATOR:

Tahoe Donner Homeowners Association 14514 Northwoods Boulevard Truckee, CA 96161 - 0000

Job Description: Emergency Response Oil Spill Clean-Up

** Payable in USD funds **

Last Service Date	Invoice No	Customer	Branch	Sales Order	Purchase Order	Terms
27 May 2017	1001869263	TA9868	NV	1701593190	SEAN CONNERS	NET 15 DAYS

Total	Description	Task Type	Task	Last Service Date
\$16,168.47	Emergency Response	GENERAL	1701593190-001	27 May 2017
SUBTOTAL \$16,168.47		25.0		
TAX \$8.17				
VOICE TOTAL \$16,176.64	PLEASE PAY THIS AMOUNT 🛶			
DUE DATE 20 Jun 2017	REMIT PAYMENT BY -			

INVOICE Invoice No 1001869263

TASK 1701593190-001 - Emergency R	?esponse					
Manifest Item ID	Description	Manifest	Manifest Billing	Billin	g Unit	Amount
Info		Qty	LIOM Qty	UOM	Price	7.000
				-		
	18 May 2017	,				
TKPU	Pickup/Van/Car/Crew Cab		4.500		22,0000	\$99.00
TKPU TRLRSPILL	Pickup/Van/Car/Crew Cab		4,500		22.0000	\$99.00
FOR	Spill Trailer Foreman		1.000		295.0000	\$295.00
FT	Field Technician		4.500		78.0000	\$351.00
FT	Field Technician		4.500		61.0000	\$274.50
FT	Field Technician		4.500		61.0000	\$274.50
EO	Equipment Operator		4.500 4.500	HR	61.0000	\$274.50
SORBPAD	Absorbent Pad (101 Grade) 100/bale		1.000		78.0000	\$351.00
SORBBOOMS	Absorbent Boom, Sin x 10ft x 4/Bale		2.000		131.0000 159.0000	\$131.00 \$318.00
			2,000	D1 122	103.0000	3318.00
	19 May 2017					
TRLRSPILL	Spill Trailer		1.000	DAY	295,0000	\$295.00
TKPU	Pickup/Van/Car/Crew Cab		10.000	HR	22,0000	\$220.00
TKPU	Pickup/Van/Car/Crew Cab		10.000	HR	22,0000	\$220.00
VACCUSCO	High Powered Vacuum Truck/Cusco		10.000	HR	161,0000	\$1,610.00
WASHER30H FOR	3000psi Hot Water Pressure Washer		2.000	HR	47,0000	\$94.00
FOROT	Foreman Foreman Overtime		8.000	HR	78,0000	\$624.00
FT	Field Technician		1.000	HR	117,0000	\$117.00
FTOT	Field Technician Overtime		8.000	HR	61.0000	\$488.00
FT	Field Technician		2.000 8.000	HR HR	91.5000	\$183.00
FTOT	Field Technician Overtime		2.000	HR	61.0000 91.5000	\$488,00
SUP	Supervisor		8.000	HR	106.0000	\$183.00 \$848.00
SUPOT	Supervisor, Overtime		2.000	HR	159.0000	\$318.00
EO	Equipment Operator		8.000	HR	78.0000	\$624.00
EOOT	Equipment Operator, Overtime		2.000	HR	117.0000	\$234.00
FT	Field Technician		8.000	HR	61.0000	\$488.00
FTOT	Field Technician Overtime		2.000	HR	91.5000	\$183,00
SORBPAD	Absorbent Pad (101 Grade) 100/bale		1.000	BALE	131.0000	\$131.00
SORBBOOMS	Absorbent Boom, 5in x 10ft x 4/Bale		1.000	BALĘ	159.0000	\$159.00
	23 May 2017					
TKPU	Pickup/Van/Car/Crew Cab		7 000	μп	00.0000	2424.22
VACSJ	Vacuum Truck, Straight		7.000 5.000		22.0000	\$154.00
EO	Equipment Operator		7.000	HR	87.0000 78.0000	\$435.00
FT	Field Technician		7.000	HR	61.0000	\$546.00 \$437.00
SORBPAD	Absorbent Pad (101 Grade) 100/bale		3.000	BALE	131,0000	\$427.00 \$393.00
SORBBOOM5	Absorbent Boom, 5in x 10ft x 4/Bale		2.000	BALE	159.0000	\$318.00
TUDL	27 May 2017					
TKPU	Pickup/Van/Car/Crew Cab		7.500	HR	22.0000	\$165.00
VACSJ	Vacuum Truck, Straight		4.000	HR	87,0000	\$348,00
TRLRUTIL PPED1	Utility / Support Trailer		1.000	DAY	201.0000	\$201.00
FFEUI	Modified Level D (Tyvec, Gloves and Boots)		2.000	EA	31,0000	\$62.00
EOOT	Equipment Operator, Overtime		7.500	HR	117.0000	\$877.50
FTOT	Field Technician Overtime		7.500	HR	91.5000	\$686.25
SORBSPEED	Speedi Dry		1.000	BAG	12.3600	\$12.36
TOTE4000	4,000 - 6,000 Gal Poly Storage Tank		1.000	DAY	99.0000 T	\$99.00
FEE	Recovery Fee		14,698.610	EA	0.1000	\$1,469.86
				SUE	STOTAL	\$16,168.47

INVOICE Invoice No 1001869263

TAX TASK TOTAL \$8.17 \$16,176.64

pick vendor>		The board arrange
on 4.61	WHOE DONNE	Commission highlightend

BILLING NAME/ADDRESS
Tahoe Donner Association
Attn: AP (530) 587-9433
11509 Northwoods Blvd.
Truckee, CA 96161

	SHIP TO ADDRESS
ahoe Donner Association	A CONTRACTOR OF THE PARTY OF TH
eceiving Department	
1509 Northwoods Bivd.	
ruckee. CA 96161	

Order Processed BY:

pick one > Dept Mgr Order Processing Method: pick one > Net 30 pick one > Email Payment TERMS: **Purchase Requisition** 7/14/2017 Sean Connors 7/13/2017 Date Order Delivery Required PO Date Deliver Order To, Name

VENDOR/SUPPLIER NAME & INFO (NEW Vendor)(note IRS W-9 required prior to order placement) ZIP 2241 State MA Fax # Supplier Name Gean Harbors Envir. Services Maintenance Phone # 775-331-9400 Address line 1 PO Box 3442 City Boston EMAIL Remit to Name Address line 2 Comment PO Requested by: Dept# Dept Name OR V0000V VENDOR/SUPPLIER NAME & INFO (Existing/Current Vendor) - PICK from List Above Fax# State ZIP Sean Connors Supplier Name 0 Use Button Scroll Bar Remit to Name OUse Button Scroll Bar PO Requested by, Name EMAIL Address line 2 Ç Phone # Address line 1 Comment

160

16,176.64 16,176.64 16,176,64 GL CHARGE Amount PO TL, this Page \$ Grand Total \$ Ist IS Characters for Each PO TL, PO Page 2 PO TL, PO Page 3 Acct Descaption / Dept Charged Hazandous Waste / REQUIRED FIELD Account Code 52505-005 XXXXX - XXX FREIGHT/SHIPPING(ALL)[INPUT 1] FREIGHT Amount s <subtotils this pg> Subject to FREIGHT Y/N >-16,176.64 Sales Tax Amount s, Subject to Sales Tax Extended Amount (ALL pgs) 16,176.64 \$ 16,176.64 \$ 16,176.64 SALES TAX (ALL) Extended Amount s s s s S \$ 16,176.64 Cost Cost -ğ SUBTOTALS Include any quates ar other support if available, below in Order Comments or attached to email MON Size Catalog# or Item Code Use PO Form (2) If more than 7 rows required. May 2017 Culvert Cleanup Description Ŋ 9

the required pre-approvals, as applicable, have been obtained. Purchase Order(PO) and generation of PO number indicate A Purchase Requistion is not an appraved Purchase Order. Purchasing Manager, Lisa Foster

9

Is this a CAPITAL PROJECT

BUDGET / OTHER COMMENTS:

Clean Harbors Invoice#1001869263. May culvert cleanup

ORDER COMMENTS:

A. GENERAL INFORMATION
GENERATOR EPA ID #/REGISTRATION #

WASTE MATERIAL PROFILE SHEET

GENERATOR NAME:

Tahoe Donner Homeowners Association

Clean Harbors Profile No. CH1473736

CAD982341620

GENERATOR CODE (Ass	signed by Clean Harbor	s) TA2296	CITY	Truckee	STATE/PRO	DVINCE	CA ZIP/POSTA	L CODE	9616	51
ADDRESS 14514 North CUSTOMER CODE (Assistant ADDRESS 11509 No.		TA9868	CUSTO	MER NAME: Truckee		nner Hom	0) 582-9630 eowners Associa CA ZIP/POSTA		9610	i 1
B, WASTE DESCRIPTION WASTE DESCRIPTION:	Oily Contaminate	d Debris	1							
PROCESS GENERATING	WASTE: Spen	it absorbents and PPE	from clear	nup.						
S THIS WASTE CONTAIN	ED IN SMALL PACKAG	SING CONTAINED WITHIN	A LARGER	SHIPPING CONTAINE	ER? No					
C. PHYSICAL PROPERTI	ES (at 25C or 77F)									
PHYSICAL STATE SOLID WITHOUT FR	EE LIQUID	NUMBER OF PHASES		0.00	V		if liquid present) .g. Water)	C	OLOR	
POWDER MONOLITHIC SOLID		% BY VOLUME (Appro	ıx.) MID	DLE 0.00		101 - 500	(e.g. Motor Oil)	7	<u>raries</u>	
LIQUID WITH NO SO	LIDS		BOT	TOM 0.00	- 1	501 - 10,0	000 (e.g. Molasses)			
LIQUID/SOLID MIXTU % FREE LIQUID	JKE	ODOR			$\neg \neg$	> 10,000				
% SETTLED SOLID % TOTAL SUSPENDE	D COLID	NONE		BOILING POINT °F	(°C) M	IELTING PO		TOTAL OF	GANIC	;
SLUDGE	D SOLID	₩ MILD		<= 95 (<=	=35)			CARBON		
GAS/AEROSOL		STRONG		95 - 100 ((35-38)		0 (<60) 200 (60-93)	100	= 1%	
		Describe:		101 - 129	(38-54)		0 (>93)	1000	-9%	
				>= 130 (>	-54)	- 201	5 (* 33)	>	= 10%	
FLASH POINT °F (°C)	pН	SPECIFIC GRAVITY		ASH			BTU/LB (MJ/kg)			
< 73 (<23)	<= 2	< 0.8 (e.g. Gasoline)	< 0.1	> 2	0	< 2,000 (<4	6)		
73 - 100 (23-38)	2.1 - 6.9	0.8-1.0 (e.g. Ethano	ol)	0.1 - 1.0		known	2,000-5,000	(4.6-11.6)		
101 -140 (38-60)	7 (Neutral)	1.0 (e.g. Water)		1.1 - 5.0	<u> </u>	KIIOWIII	5,000-10,00	0 (11.6-23.	2)	
141 -200 (60-93)	7.1 - 12.4	1.0-1.2 (e.g. Antifre	eze)	5.1 - 20.0			> 10,000 (>	23.2)		
> 200 (>93)	>= 12.5	> 1.2 (e.g. Methyler	ne Chloride)				Actual:			
D. COMPOSITION (List t	he complete composition	on of the waste, include any	Inert compor	nents and/or debris. Ra	anges for indi	vidual comp	onents are acceptabl	e, if a trade	name i	s used,
CHEMICAL							MIN		MAX	UOM
ABSORBANT BOOM	A AND PADS						50.0000000	70.0000	0000	%
PPE							20.0000000	50.000	0000	%
SOIL & DEBRIS							20.0000000	50.000	0000	%
>12" LONG, METAL REIN	FORCED HOSE >12" L	JGE METAL DEBRIS OR O ONG, METAL WIRE >12" L						YES	V	NO
PIECES OF CONCRETE >										
	•	POWDERED OR OTHER	FINELY DIV	DED FORM?				YES	•	NO
	SICAL WASTE, PATHO	NTACTED ANY OF THE FO LOGICAL WASTE, HUMAN						YES	~	МО
		ither infectious nor does it c lect the answer below that a		ganism known to be a	threat to hum	nan health, '	This certification is			
The waste was neve	r exposed to potentially	infectious material.						YES		NQ
Chemical disinfection	n or some other form of	sterilization has been applie	ed to the was	te				YES		NO
ACKNOWLEDGE THAT	THIS PROFILE MEETS	THE CLEAN HARBORS	BATTERY PA	CKAGING REQUIRE	MENTS			YES		NO
I ACKNOWLEDGE THAT	MY FRIABLE ASBEST	OS WASTE IS DOUBLE B	AGGED AND	WETTED				YES		NO
SPECIFY THE SOURCE WASTE	CODE ASSOCIATED V	WITH THE G32		SPECIFY THE F	FORM CODE	ASSOCIATI	ED WITH THE WAST	E. W002	?	

E. CONSTITUENTS

Are these values based on testing or knowledge?

✓ Knowledge

If based on knowledge, please describe in detail, the rationale applied to identify and characterize the waste material. Please include reference to Material Safety Data Sheets (MSDS) when applicable. Include the chemical or trade-name represented by the MSDS, and or detailed process or operating procedures which generate the waste.

Generators Knowledge of process creating waste.

Please indicate which constituents below apply. Concentrations must be entered when applicable to assist in accurate review and expedited approval of your waste profile. Please note that the total regulated metals and other constituents sections require answers.

RCRA	REGULATED METALS	REGULATORY LEVEL (mg/l)	TCLP mg/l	TOTAL	UOM	NOT APPLICABLE	
Ð004	ARSENIC	5.0				~	
D005	BARIUM	100.0				V	
D006	CADMIUM	1,0				~	
D007	CHROMIUM	5.0	• • • • • • • • • •			<u> </u>	
8000	LEAD	5.0			• • • • • • • •	~	
D009	MERCURY	0.2				V	
D010	SELENIUM	1.0	• • • • • • • • • •			7	
D011	SILVER	5.0				<u> </u>	
	VOLATILE COMPOUNDS			OTHER CONSTITUENT	S	MAX UOM	NOT
D018	BENZENE	0.5		0001445			APPLICABLE
D019	CARBON TETRACHLORIDE	0.5		BROMINE			<u>v</u>
D021	CHLOROBENZENE	100,0		CHLORINE			
D022	CHLOROFORM	6.0		FLUORINE			<u> </u>
D028	1,2-DICHLOROETHANE	0.5		IODINE			<u>V</u>
D029	1,1-DICHLOROETHYLENE	0.7		SULFUR	. –		⊻.
D035	METHYL ETHYL KETONE	200.0		POTASSIUM			~
D039	TETRACHLOROETHYLENE	0.7		SODIUM			Y
D040	TRICHLOROETHYLENE	0.5		AMMONIA			<u> </u>
D043	VINYL CHLORIDE	0.2		CYANIDE AMENABLE			V
	SEMI-VOLATILE COMPOUN	DS		CYANIDE REACTIVE			V
D023	o-CRESOL	200.0		CYANIDE TOTAL			V
D024	m-CRESOL	200 0		SULFIDE REACTIVE			~
D025	p-CRESOL	200.0					
D026	CRESOL (TOTAL)	200.0		HOCs		PCBs	
D027	1,4-DICHLOROBENZENE	7.5		✓ NONE		✓ NONE	
D030				< 1000 PPM		< 50 PPM	
	2,4-DINITROTOLUENE	0.13		>= 1000 PPM		>=50 PPM	
D032	HEXACHLOROBENZENE	0.13				IF PCBS ARE PRESENT	T. IS THE
D033	HEXACHLOROBUTADIENE	0.5				WASTE REGULATED B	
D034	HEXACHLOROETHANE	3.0				CFR 761?	
D036	NITROBENZENE	2.0		I		YES 🗸	NO
D037	PENTACHLOROPHENOL	100.0					
D038	PYRIDINE	5.0					
D041	2,4,5-TRICHLOROPHENOL	400.0					
D042	2,4,6-TRICHLOROPHENOL	2.0	e.194				
000000000000000000000000000000000000000	PESTICIDES AND HERBICIT	DES					
D012	ENDRIN	0 02					
D013	LINDANE	0.4					
D014	METHOXYCHLOR	10.0					
D015	TOXAPHENE	0.5					
D016	2,4-D	10.0	• • • • • • • • • • • • • • • • • • • •				
D017		1.0	• • • • • • • • • • • • • • • • • • • •				
D020		0.03					
D031							
*	HEPTACHLOR (AND ITS EPOXIC	DE) 0.008					
	IONAL HAZARDS HIS WASTE HAVE ANY UNDISCLO:	CCD U474DDC 00 DDI0	B INCIDENTS				

DOES THIS WASTE HAVE ANY UNDISCLOSED HAZARDS OR PRIOR INCIDENTS ASSOCIATED WITH IT, WHICH COULD AFFECT THE WAY IT SHOULD BE HANDLED?

NO (If yes, explain)

CHOOSE ALL THAT APPLY

POLYMERIZABLE

DEA REGULATED SUBSTANCES

EXPLOSIVE

FUMING

OSHA REGULATED CARCINOGENS

RADIOACTIVE REACTIVE MATERIAL NONE OF THE ABOVE

F. REGULA	TORY	STATI	JS			
YES	V	NO	USEPA HAZARDOUS W	ASTE?		
✓ YES		NO	DO ANY STATE WASTE	CODES APPLY?		
			352			
			Texas Waste Code			
YES	4	NO	DO ANY CANADIAN PRO	OVINCIAL WASTE CODES APPLY?		
YES	V	NO		ITED FROM LAND DISPOSAL WITHO	UT FURTHER TREATMENT PE	ER 40 CFR PART 268?
			LDR CATEGORY VARIANCE INFO	Not subject to LDR		
YES	V	NO	IS THIS A UNIVERSAL W	ASTE?		
YES	V	NO	IS THE GENERATOR OF	THE WASTE CLASSIFIED AS VERY	SMALL QUANTITY GENERATO	DR (VSQG) OR A STATE EQUIVALENT DESIGNATION?
YES		NO	IS THIS MATERIAL GOIN	IG TO BE MANAGED AS A RCRA EXE	MPT COMMERCIAL PRODUC	T, WHICH IS FUEL (40 CFR 261.2 (C)(2)(II))?
YES	V	NO	DOES TREATMENT OF	THIS WASTE GENERATE A FOOG OR	F019 SLUDGE?	
YES		NO	IS THIS WASTE STREAM	SUBJECT TO THE INORGANIC MET	AL BEARING WASTE PROHIB	ITION FOUND AT 40 CFR 268.3(C)?
YES	V	NO	DOES THIS WASTE CON	ITAIN VOC'S IN CONCENTRATIONS	>=500 PPM?	
YES		NO	DOES THE WASTE CON	TAIN GREATER THAN 20% OF ORGA	NIC CONSTITUENTS WITH A	VAPOR PRESSURE >= .3KPA (.044 PSIA)?
YES	~	NO	DOES THIS WASTE COM	ITAIN AN ORGANIC CONSTITUENT V	VHICH IN ITS PURE FORM HA	S A VAPOR PRESSURE > 77 KPA (11.2 PSIA)?
YES	4	NO	IS THIS CERCLA REGUL	ATED (SUPERFUND) WASTE ?		
YES	~	NO	IS THE WASTE SUBJEC	T TO ONE OF THE FOLLOWING NES	HAP RULES?	
			Hazardous Organic	NESHAP (HON) rule (subpart G)	Pharmaceuticals produ	uction (subpart GGG)
YES		NO	IF THIS IS A US EPA HA	ZARDOUS WASTE, DOES THIS WAS	TE STREAM CONTAIN BENZEI	NE?
	YES					ene NESHAP or is this waste regulated under the benzene ng, coke by-product recovery, or petroleum refinery process?
	YES			source of this waste stream a facility v		
	Wha	t is the	TAB quantity for your facil	ity? Meg	agram/year (1 Mg = 2,200 lbs)	
	The	basis	for this determination is: Kn	owledge of the Waste Or Test Data		Knowledge Testing
	Des	cribe ti	ne knowledge			
G. DOT	/TDG II	VFOR	MATION			
			IPPING NAME:			
NC	N HAZ	ZARD	OUS, NON D.O.T. REG	ULATED, (OIL CONTAMINATED	DEBRIS)	
			REQUIREMENTS FREQUENCY ONE	TIME WEEKLY MONTHLY QU	ARTERLY YEARLY OTH	ER
	V	CC	ONTAINERIZED	Bu	ILK LIQUID	BULK SOLID
			RS/SHIPMENT	GALLONS/SHIPMENT: 0	Min -0 Max GAL.	SHIPMENT UOM: TON YARD
STORAGE CONTAINE			15			TONS/YARDS/SHIPMENT: Q Min - Q Max
PC	RTABLE 1	OTE TA	NK BOXICARTONICA	SE		25
	BIC YARD	BOX	DRUM			
01	HER		DRUM SIZE. 55	l		I
I. SPECIA	L REQ	UEST				
COMM	NTS OF	REQU	JESTS:			
GENERATO	R'S CEF	RTIFICA	ATION			
I certify that samples sul	am automitted a	horizad ra repri	to execute this document as an	authorized agent. I hereby certify that all info Clean Harbors discovers a discrepancy during	mation submitted in this and attached the approval process, Generator gra	d documents is correct to the best of my knowledge. I also certify that any ints Clean Harbors the authority to amend the profile, as Clean Harbors
AL	JTHOR	IZED S	SIGNATURE	NAME (PRINT)	TITLE	DATE

WASTE MATERIAL PROFILE SHEET

Clean Harbors Profile No. CH1473727

A. GENERAL INFORMAT GENERATOR EPA ID #/R GENERATOR CODE (Ass ADDRESS 14514 Nort CUSTOMER CODE (Ass) ADDRESS 11509 No	REGISTRATION # signed by Clean Harbors thwoods Boulevard	TA9868	CITY	ATOR NAI Trucke	STAT	E/PROVINCE PHONE: (53	30) 582-9630 eowners Associ	TAL CODE	9610	
B. WASTE DESCRIPTION WASTE DESCRIPTION: PROCESS GENERATING	Oily Water	up of spill residuals								
IS THIS WASTE CONTAIN	ED IN SMALL PACKAGI	NG CONTAINED WITHIN A I	LARGER	SHIPPING	CONTAINER ?	No				
C. PHYSICAL PROPERTI	ES (at 25C or 77F)									
PHYSICAL STATE SOLID WITHOUT FR. POWDER MONOLITHIC SOLID LIQUID WITH NO SO LIQUID/SOLID MIXTU	LIDS	NUMBER OF PHASES/L/ 1 2 3 % BY VOLUME (Approx.)	TOF	DLE TOM	5.00 0.00 95.00	1 - 100 (e 101 - 500 501 - 10	0 (e.g. Motor Oil) 000 (e.g. Molasses)	V.	LOR aries	
% FREE LIQUID % SETTLED SOLID % TOTAL SUSPENDE SLUDGE GAS/AEROSOL		ODOR NONE MILD STRONG Describe:		BOILING	3 POINT °F (°C) <= 95 (<=35) 95 - 100 (35-38) 101 - 129 (38-54) >= 130 (>54)) 140-		1-	3ANIC = 1% 9% = 10%	
FLASH POINT °F (°C) < 73 (<23) 73 - 100 (23-38) 101 -140 (38-60) 141 -200 (60-93) > 200 (>93)	pH <= 2 2.1 - 6.9 7 (Neutral) 7.1 - 12.4 >= 12.5	SPECIFIC GRAVITY < 0.8 (e.g. Gasoline) 0.8-1.0 (e.g. Ethanol) 1.0 (e.g. Water) 1.0-1.2 (e.g. Antifreeze > 1.2 (e.g. Methylene Con of the waste, include any ine	Chioride)	0 1 5	0.1 1-1.0	> 20 Unknown	5,000-10,0 > 10,000 (Actual;	00 (4.6-11.6) 000 (11,6-23.2) >23.2)		
		se do not use abbraviations.)		· · · · · ·	ueurs, Ranges II	of individual comp	MIN 1.0000000 1.0000000	St 7865	IAX 000	
>12" LONG, METAL REINI PIECES OF CONCRETE >	FORCED HOSE >12" LC •3")?	GE METAL DEBRIS OR OTH DNG, METAL WIRE >12" LON						YES		NO
If yes, describe, inclu DOES THIS WASTE COM	J	POWDERED OR OTHER FIN	NELY DIV	IDED FOR	M?			YES	V	NO
FLUIDS, MICROBIOLOG POTENTIALLY INFECTION I acknowledge that the	SICAL WASTE, PATHOL OUS MATERIAL? his waste material is neith	TACTED ANY OF THE FOLL OGICAL WASTE, HUMAN Of the infectious nor does it cont ect the answer below that app	R ANIMAI	DERIVE	SERUMS OR PR	OTEINS OR ANY	OTHER	YES	>	NO
•	r exposed to potentially i	••	11.53					VEG		NO
		iterilization has been applied t	n the was	te				YES YES		NO NO
		THE CLEAN HARBORS BAT			REQUIREMENTS	5		YES		NO
		S WASTE IS DOUBLE BAG						YES		NO
SPECIFY THE SOURCE (CODE ASSOCIATI	ED WITH THE WAS			

E. CONSTITUENTS

Are these values based on testing or knowledge?

✓ Knowledge

Testing

If based on knowledge, please describe in detail, the rationale applied to identify and characterize the waste material. Please include reference to Material Safety Data Sheets (MSDS) when applicable. Include the chemical or trade-name represented by the MSDS, and or detailed process or operating procedures which generate the waste.

Generator Knowledge of process generating waste

Please indicate which constituents below apply. Concentrations must be entered when applicable to assist in accurate review and expedited approval of your waste profile. Please note that the total regulated metals and other constituents sections require answers.

ARSENIC	LEVEL (mg/l) 5.0	mg/l				
	3.0				✓	
BARIUM	100 0				V	
CADMIUM	1.0				V	
CHROMIUM	5.0				V	
LEAD	5.0		• • • • • • • • • • • • • • • • • • • •		·····	
MERCURY	0.2			• • • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·	
SELENIUM	1,0				J	
SILVER	5.0		•••••••	• • • • • • • • •		
VOLATILE COMPOUNDS						
	0.5		OTHER CONSTITUEN	TS	MAX UOM	NOT APPLICABL
			BROMINE			AFFEICABL
						·····j

					•••••••	
						····· ·
						<u> </u>
						<u> </u>
	0.5					
VINYL CHLORIDE	0.2				*****	<u> </u>
SEMI-VOLATILE COMPOUNDS						
o-CRESOL	200.0		CYANIDE TOTAL		******************	~
m-CRESOL	200.0		SULFIDE REACTIVE			~
p-CRESOL	200.0		HOCs		BCB.	
CRESOL (TOTAL)	200 0				1 000	
1,4-DICHLOROBENZENE	7.5					
2,4-DINITROTOLUENE	0.13					
HEXACHLOROBENZENE	0 13		>= 1000 PPM		>=50 PPM	
HEXACHLOROBUTADIENE	0.5		1		IF PCBS ARE PRESEN	T. IS THE
HEXACHLOROETHANE	3.0				CFR 761?	57 TSCA 40
		• • • • • • • • • • • • • • • • • • • •			VEG	NO
			•		1 123	NO
	0.4					
	10.0					
TOXAPHENE	0.5					
2,4-D	10.0					
2,4.5-TP (SILVEX)	1.0					
CHLORDANE	0.03					
HEPTACHLOR (AND ITS EPOXIDE)	0.008					
	LEAD MERCURY SELENIUM SILVER VOLATILE COMPOUNDS BENZENE CARBON TETRACHLORIDE CHLOROBENZENE CHLOROFORM 1,2-DICHLOROETHANE 1,1-DICHLOROETHYLENE METHYL ETHYL KETONE TETRACHLOROETHYLENE METHYL ETHYL KETONE TETRACHLOROETHYLENE VINYL CHLORIDE SEMI-VOLATILE COMPOUNDS O-CRESOL M-CRESOL CRESOL CRESOL (TOTAL) 1,4-DICHLOROBENZENE 2,4-DINITROTOLUENE HEXACHLOROBENZENE HEXACHLOROBENZENE HEXACHLOROBENZENE HEXACHLOROPHENOL PYRIDINE 2,4,5-TRICHLOROPHENOL 2,4,6-TRICHLOROPHENOL 2,4,6-TRICHLOROPHENOL 2,4,5-TRICHLOROPHENOL PESTICIDES AND HERBICIDES ENDRIN LINDANE METHOXYCHLOR TOXAPHENE 2,4-D 2,4,5-TP (SILVEX) CHLORODANE HEPTACHLOR (AND ITS EPOXIDE) NAL HAZARDS	SELENIUM 1.0 SILVER 5.0	MERCURY	LEAD	LEAD	LEAD

DEA REGULATED SUBSTANCES

CHOOSE ALL THAT APPLY

POLYMERIZABLE

YES

✓ NO (If yes, explain)

EXPLOSIVE

RADIOACTIVE

FUMING

REACTIVE MATERIAL

OSHA REGULATED CARCINOGENS

✓ NONE OF THE ABOVE

F. REG	ULATOR	RY \$1	TATL	ıs			
Υ	ES [Y	40	USEPA HAZARDOUS W	ASTE?		
∀ Y	ES	١	10	DO ANY STATE WASTE	CODES APPLY?		
				223			
		_		Texas Waste Code			
Y	ES [Y N	4Q	DO ANY CANADIAN PRO	IVINCIAL WASTE CODES APPLY?	·	
Υ	ES [Y N	10	IS THIS WASTE PROHIB	ITED FROM LAND DISPOSAL WIT	HOUT FURTHER TREATMENT P	ER 40 CFR PART 268?
				LDR CATEGORY: VARIANCE INFO	Not subject to LDR		
Υ	ES [Y N	NO	IS THIS A UNIVERSAL W	ASTE?		
Υ	ES [Y N	40	IS THE GENERATOR OF	THE WASTE CLASSIFIED AS VE	RY SMALL QUANTITY GENERAT	OR (VSQG) OR A STATE EQUIVALENT DESIGNATION?
Υ	ES	١	٩Q	IS THIS MATERIAL GOIN	G TO BE MANAGED AS A RCRA	EXEMPT COMMERCIAL PRODUC	CT, WHICH IS FUEL (40 CFR 261.2 (C)(2)(II))?
Υ	EŞ [Y 1	10	DOES TREATMENT OF	HIS WASTE GENERATE A FOO6 (OR F019 SLUDGE?	
Υ	ES	١	40	IS THIS WASTE STREAM	SUBJECT TO THE INORGANIC	METAL BEARING WASTE PROHII	BITION FOUND AT 40 CFR 258.3(C)?
Υ	ES [Y 1	40	DOES THIS WASTE CON	ITAIN VOC'S IN CONCENTRATION	NS >=500 PPM?	
Υ	ES	١	40	DOES THE WASTE CON	TAIN GREATER THAN 20% OF OF	RGANIC CONSTITUENTS WITH A	VAPOR PRESSURE >= .3KPA (.044 PSIA)?
Υ	ES [V	40	DOES THIS WASTE CON	ITAIN AN ORGANIC CONSTITUEN	IT WHICH IN ITS PURE FORM HA	AS A VAPOR PRESSURE > 77 KPA (11.2 PSIA)?
Y	-		VO.	IS THIS CERCLA REGUL	ATED (SUPERFUND) WASTE?		
Y	ES [Y	10	IS THE WASTE SUBJECT	TTO ONE OF THE FOLLOWING N	ESHAP RULES?	
				Hazardous Organic	NESHAP (HON) rule (subpart G)	Pharmaceuticals prod	duction (subpart GGG)
Υ	ES	١	40	IF THIS IS A US EPA HA	ZARDOUS WASTE, DOES THIS W	ASTE STREAM CONTAIN BENZE	NE?
	Υ	'ES					zene NESHAP or is this waste regulated under the benzene ing, coke by-product recovery, or petroleum refinery process?
	Υ	rES			source of this waste stream a facili		
	٧	∕⁄hat i	is the	TAB quantity for your facil	ty? N	legagram/year (1 Mg = 2,200 lbs)	
	Ŧ	The ba	asis f	or this determination is: Kn	owledge of the Waste Or Test Data		Knowledge Testing
		Descri	ibe th	e knowledge :			
G.	DOT/TDO	G INF	ORN	IATION			
DOTA	TDG PRO	DPER	SHI	PPING NAME:			
	NON F	HAZ/	ARD	DUS, NON D.O.T. REG	ULATED LIQUID, (OILY WAT	ER)	
				REQUIREMENTS FREQUENCY VONE	TIME WEEKLY MONTHLY	QUARTERLY YEARLY OTH	HER
			co	NTAINERIZED		BULK LIQUID	BULK SOLID
1	<u>2-0</u> cc	ATAC	INER	S/SHIPMENT	CALL OND/CUIDMENT		SHIPMENT UOM: TON YARD
	AGE CAP		TY:		GALLONS/SHIPMENT	: 100.00 Min -5000.00 GAL: Max	TONS/YARDS/SHIPMENT: 0 Min - 0 Max
COM	PORTAB		TE TAN	IK BOXICARTONICA	se e		TOTOTARDOSAIPMENT: DIMIN - O MAX
	CUBIC Y	ARD 8	OX	DRUM	183		
	OTHER.			DRUM SIZE.			
I. SP	ECIAL R	EQUI	EST				
CC	MMENTS	OR R	EQUE	ests:			
GENER	RATOR'S	CERT	IFICA	TION			
sample	is submitte	ed are	repre:	o execute this document as an sentative of the actual waste.lf (he discrepancy	authorized agent. I hereby certify that all Clean Harbors discovers a discrepancy di	information submitted in this and attache uring the approval process, Generator gr	d documents is correct to the best of my knowledge! also certify that any ants Clean Harbors the authority to amend the profile, as Clean Harbors
_	AUTHO	ORIZI	ED S	IGNATURE	NAME (PRINT)	TITLE	DATE

Proposal No. PT17171 July 8, 2017

Tahoe Donner Association 11509 Northwoods Boulevard Truckee, California 96161

Attention:

Annie Rosenfeld

Reference: Tahoe Donner Association

Truckee, Nevada County, California

Subject:

Proposal for On-Call Environmental Consulting Services

Holdrege & Kull (H&K) is pleased to present this proposal to perform on-call environmental consulting services for Tahoe Donner Association (TDA). H&K understands that an apparent petroleum hydrocarbon release recently occurred near the existing Maintenance complex and impacted near-surface soil. In addition, H&K also understands that representatives of the California Regional Water Quality Control Board, Lahontan Region (Lahontan) collected near-surface soil samples of stained surface soil within the area of the recent release. Based on our recent conversations with you, the stained soil has been removed and Lahontan is requesting collection of confirmation soil samples in the area of the removed soil.

Our current scope of services will include the following:

- A single site visit to collect near-surface soil samples at locations previously sampled by Lahontan;
- Consultation with regulatory agencies and TDA staff;
- Review of the laboratory analytical report for soil samples collected by H&K (H&K understands that Alpha Analytical, Inc. located in Sparks, Nevada, will complete laboratory testing services); and,
- Preparation of a letter describing H&K's soil sampling, presenting laboratory test results, providing a general opinion regarding the effectiveness of the removed stained soil, and recommendations for further remedial efforts, as needed.

H&K will provide the scope of services described above for an estimated fee of \$3,000 to \$4,000, on a time and expense basis in accordance with our attached 2017 Fee Schedule. This cost does not include analytical laboratory fees. H&K understands that analytical fees will be charged to the TDA account with Alpha Analytical, Inc. Billing will be monthly on a percent complete basis. Additional services beyond the scope of this proposal performed at the client's request will be

John K. Hudson, P.E., C.E.G.

billed on a time and materials basis using the fee schedule applicable at the time the services are provided. Please sign and return one copy of the attached Agreement for Environmental Consulting Services to our office as our authorization to proceed. We appreciate the opportunity to provide this proposal, and we look forward to working with you. If you have any questions or need additional information, please contact the undersigned.

Sincerely,

HOLDREGE & KULL

Pamela J. Rayhak, P.G.

Senior Geologist

Enclosures:

2017 Fee Schedule

Agreement for Environmental Consulting Services

Principal.

AGREEMENT FOR ENVIRONMENTAL CONSULTING SERVICES

THIS AGREEMENT, effective as of this 8th day of July 2017, is by and between Tahoe Donner Association ("Client") and Holdrege & Kull Consulting Engineers and Geologists ("Consultant"). The Project is described in Consultant's attached Proposal PT17171, dated July 8, 2017, which is hereby incorporated into and made a part of this Agreement. Consultant will perform Services under this Agreement as an independent contractor.

- 1. Level of Service. Consultant offers different levels of environmental consulting Services to suit the desires and needs of different clients. Although the possibility of error can never be eliminated, more detailed and extensive Services yield more information and reduce the probability of error, but at increased cost. Client must determine the level of service adequate for its purposes. Client has reviewed the scope of services outlined in the Proposal and has determined that it does not need or want a greater level of service than that being provided.
- 2. Standard of Care. Subject to the limitations inherent in the agreed scope of services outlined in the Proposal as to the degree of care, the amount of time and expenses to be incurred, and subject to any other limitations contained in this Agreement, Consultant may perform its Services consistent with that level of care and skill ordinarily exercised by other consultants practicing in the same discipline and locale under similar circumstances at the time the Services are performed. No warranty, express or implied, is included or intended by this Agreement. Client acknowledges that Projects that include hazardous or toxic materials and/or investigations of chemicals in the environment involve inherent uncertainties, such as limitations on laboratory analytical methods and variations in subsurface conditions. Such uncertainties may adversely affect a Project's results, even though the Services are performed with skill and care.
- 3. Payments to Consultant. Client will pay Consultant's invoices within 30 days following the invoice date, along with a late payment charge at the rate of 1½% per month after that date. Consultant may, at its sole option, suspend or terminate this Agreement if Client does not make payments when due. Unless otherwise agreed in writing, Consultant will bit its Services on a time-and-materials basis using its current schedule of fees and costs. Limitations stated in the PROPOSAL on the amount to be billed are estimates only, and are not an agreement by Consultant that it will complete the Services for the estimated amount. Client will reimburse Consultant for any costs, including legal fees, associated with the collection of past due unpaid amounts.
- 4. Evolving Technologies. The investigation, characterization and remediation of hazardous materials involve technologies which are rapidly evolving. Existing state-of-the-art technologies are often new and untried, and future technologies may supersede current techniques. In addition, standards for remediation, including statutes and regulations, change with time. Client understands that Consultant's recommendations must be based upon current technologies and standards and may differ from the recommendations that might be made at a later time.
- 5. Certifications. Client agrees not to require Consultant to execute any certification with regard to Services performed or Work tested and/or observed under this Agreement unless: 1) Consultant believes that it has performed sufficient Services to provide a sufficient basis to issue the certification; 2) Consultant believes that the Services performed or Work tested and/or observed meet the criteria of the certification; and 3) Consultant has reviewed and approved in writing the exact form of such certification prior to execution of this Agreement. Any certification by Consultant is limited to an expression of professional opinion based upon the Services performed by Consultant, and does not constitute a warranty or guaranty, either express or implied.
- 6. Site Access. Client agrees to provide access and/or obtain permission for Consultant to enter upon all property as necessary to perform the Services. Consultant will exercise reasonable care to reduce damage, but Client recognizes that Consultant's operations and investigative equipment may unavoidably alter or affect the Project site. The cost of repairing such damage will be borne by Client and is not included in the fee unless otherwise stated in the Proposal.
- 7. Relevant Information. Client will provide Consultant with all information Client has, or can reasonably obtain, concerning the Project site, including subsurface conditions and the location of subsurface or hidden pipes, utilities or structures. Consultant will endeavor to avoid damage to such pipes, utilities and structures, but is not responsible for any damage to such items not properly identified in the information provided to it by Client. Consultant may reasonably rely on the accuracy and completeness of any information supplied by Client, without independently verifying its accuracy. Prior to the commencement of Services, Client will notify Consultant of any known potential health or safety hazard existing on or near the Project site, with particular reference to Hazardous Materials or conditions.

- 8. Hazardous Materials. The term Hazardous Materials means any toxic substances, chemicals, radioactivity, pollutants or other materials, in whatever form or state, known or suspected to impair the environment in any way whatsoever, including but are not limited to, those substances defined, designated or listed in any federal, state or local law, regulation or ordinance concerning hazardous wastes, toxic substances or pollution. Client is solely responsible for notifying all appropriate federal, state, municipal or other governmental agencies and potentially affected public of the existence of any Hazardous Materials located at the Project site during performance of this Agreement. Any samples from the Project site that contain hazardous materials will remain the property of Client.
- 9. Remediation Phase Services. Consultant is not responsible for the means, methods, techniques or sequences used by Contractor during the performance of the Remediation Work ("Work"). Consultant will not supervise or direct Contractor's Work, nor be liable for any failure of Contractor to complete its Work in accordance with the Contract Documents or with applicable laws and regulations. Client understands and agrees that Contractor, and not Consultant, has sole responsibility for the safety of persons and property at the Project Site during remediation. Tests performed by Consultant on finished Work or Work in progress are taken intermittently and indicate the general acceptability of the Work on a statistical basis. Consultant's tests and observation of the Work are not a guarantee of the quality of other parties' work and do not relieve other parties from their responsibility to perform their work in accordance with applicable plans, specifications and requirements. Client acknowledges that environmental remediation costs are subject to many influences that are not subject to precise forecasting and are outside of Consultant's control. Client further acknowledges that actual costs incurred may vary substantially from the estimates prepared by Consultant and that Consultant does not warrant or guaranty the accuracy of environmental remediation cost estimates.
- 10. Subsurface Structures. Client agrees to correctly designate the location of all subsurface structures on plans to be furnished to Consultant such as pipes, tanks, cables and utilities within the property lines of the Project Site(s) and be responsible for any damage inedvertently caused by Consultant to any such structure or utility not so designated. Consultant is not liable to Client for any losses, damages or claims arising from damage to subterranean structures or utilities that were not correctly shown on plans furnished by Client to Consultant.
- 11. Manifests. Client agrees to execute all manifests or other documents evidencing ownership, possession or control over Hazardous Materials.
- 12. Limitation of Remedies. The total cumulative liability of Consultant and its subcontractors, employees and agents to Client arising from Services under this Agreement will not exceed the gross compensation received by Consultant under this Agreement or \$50,000, whichever is greater. This limitation applies to all lawsuits, claims or actions that allege errors or omissions by Consultant, whether alleged in tort, contract, or under any other legal theory. Upon Client's written request, Consultant and Client may agree to increase the limitation to a greater amount in exchange for an increase in Consultant's fee. Neither Consultant nor Client will be liable to the other for any special, consequential, incidental or penal losses or damages. Further, both Client and Consultant waive any right to sue, or otherwise make any claim against any of the other party's officers, directors, shareholders or employees, past or present, as individuals.
- 13. Insurance. Consultant will maintain policies of general liability, automobile liability, workers compensation and professional liability (including pollution legal liability) insurance throughout the duration of this Agreement. Client will maintain property insurance sufficient to protect any property in which it has an insurable interest. Consultant and Client each waive any claims against each other for damage to property covered, or that should have been covered by property insurance required by this paragraph, including subrogated claims. Upon request, Consultant and Client will each provide the other with a certificate(s) of insurance evidencing the insurance required by this section.
- 14. Indemnification of Client. Subject to the provisions and limitations of this Agreement and all otherwise applicable statutes of limitations and repose, Engineer agrees to indemnify and hold harmless Client, its shareholders, officers, directors and employees from and against claims, suits, liabilities, damages, expenses (including reimbursement of reasonable attorney's fees and costs of defense), or other losses (collectively "Losses") to the extent caused by Engineer's negligent performance of its Services under this Agreement. Consultant's defense obligation under this indemnity paragraph includes only the reimbursement of reasonable defense costs to the extent of Consultant's actual indemnity obligation hereunder.
- 15. Indemnification of Consultant. Client will indemnify and hold harmless Consultant (Including its shareholders, officers, directors and employees) from and against any and all claims, suits, liabilities, damages, expenses (including without limitation reasonable attorney's fees and costs of defense) or other losses, to the extent caused by the negligence of Client, its employees, agents and contractors. In addition, except to the extent caused by Consultant's sole negligence, Client expressly agrees to defend, indemnify and hold harmless Consultant from and against any and all Losses arising from or related to the existence, disposal, release, discharge, treatment or transportation of Hazardous Materials, or the exposure of any person to Hazardous Materials, or the degradation of the environment due to the presence, discharge, disposal, release of or exposure to Hazardous Materials.

- 16. No Personal Liability. Client expressly waives that right to sue, or otherwise make any claim against, any of the Consultant's officers or employees, past or present, as individuals, for any cause.
- 17. Consequential Damages. Neither Client nor Consultant will be liable to the other for any special, consequential, incidental or penal losses or damages including but not limited to losses, damages or claims related to the unavailability of property or facilities, shutdowns or service interruptions, loss of use, profits, revenue, or Inventory, or for use charges, cost of capital, or claims of the other party and/or its customers.
- 18. Mediation. Consultant and Client agree to mediate any dispute regarding this Agreement or its performance as a precondition to instituting any legal action against the other, each party sharing equally the mediation fees and costs.
- 19. Termination. Either party may terminate this Agreement for convenience by giving 14 days written notice to the other party, and for cause by giving 7 days written notice. If Client terminates this Agreement, in addition to any other compensation due under this Agreement, it will pay amounts incurred by Consultant in preparing to perform Services, performing them, and in their orderly termination.
- 20. Continuing Agreement. The indemnity obligations and the limitations of liability established under this Agreement will survive its expiration or termination. If Consultant provides Services to Client that the parties do not confirm in an executed amendment to this Agreement, the obligations of the parties to indemnify each other and the limitations on liability established under this Agreement will apply to such Services as if the parties had executed an amendment.
- 21. Assignment; Use of Consultant's Work Product. During the term of this Agreement and following its completion, expiration, or termination for any reason, neither the Client nor Consultant shall assign, subjet or transfer any claims, rights, or interest in or under this Agreement without the prior written consent of the other party. No party other than Client may rely on documents produced by Consultant's without Consultant's express prior written consent and receipt of additional compensation. Consultant may subcontract for the services of others without obtaining Client's consent if Consultant deems it necessary or desirable for others to perform certain Services.
- 22. Full and Final Agreement. This Agreement is the full and final agreement between Consultant and Client and supersedes any prior agreements. This Agreement may not be modified except by a writing executed by both parties.

	CLIENT:	CONSULTANT:	
Signature:	DOWN	golin K. Hudon	9
Print Name:	Robb Etnyre	John K. Hudson, P.E. (C050923)	
Title:	Several Manager	Principal	
Company:	Tahoe Donner Association	Holdrege & Kull	
Street Address:		10775 Pioneer Trail, Suite 213	
City, State, Zip Code:		Truckee, CA 96161	
Email:		jhudson@handk.net	
Phone:		530 587 5156	
Fax:		530 587 5196	
Date:		July 8, 2017	
		· · · · · · · · · · · · · · · · · · ·	

Alpha Analytical, Inc 255 Glendale Ave, #21 Sparks, Nevada 89431 TEL: (775) 355-1044 FAX: (775) 355-0406 Website: www.alpha-analytical.com

June 05, 2017

Sean Connors Tahoe Donner Association 11509 Northwoods Blvd. Truckkee, CA 96161

TEL: (530) 362-0056

FAX

RE: Maintenance Yard

Dear Sean Connors:

Order No.: TDA1705235

There were no problems with the analytical events associated with this report unless noted.

Quality control data is within laboratory defined or method specified acceptance limits except if noted. Version 8260B was used.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Roger Scholl

Laboratory Director

255 Glendale Ave, #21

Roger Scholl

Sparks, Nevada 89431

Alpha Analytical, Inc.

(775) 355-1044 / (775) 355-0406 FAX / 1-800-283-1183 225 Glendale Ave. - Suite 21 - Sparks, Nevada 89431-5578

Analytical Report

WO#:

TDA1705235

Report Date:

6/5/2017

CLIENT:

Tahoe Donner Association

Project:

Maintenance Yard

Lab ID:

1705235-01

Client Sample ID A discharge

Matrix: AQUEOUS

Collection Date: 5/22/2017 2:00:00 PM

Analyses	Result	PQL	Qual	Units	Date Analyzed Method
Oil & Grease, HEM	6.3	5		mg/L	5/31/2017 Oil & Grease by EPA 1664
TPH-E (DRO)	0.32	0.1	Ļ	mg/L	5/24/2017 TPH-E by EPA 8015B
TPH-E (ORO)	1.8	1		mg/L	5/24/2017 TPH-E by EPA 8015B
Surr: Nonane	101	53-145		%Rec	5/24/2017 TPH-E by EPA 8015B
TPH-P (GRO)	ND	0.05		mg/L	5/23/2017 TPH-P by EPA 8015B
Surr: 1,2-Dichloroethane-d4	97	70-130		%Rec	5/23/2017 TPH-P by EPA 8015B
Surr: Toluene-d8	107	70-130		%Rec	5/23/2017 TPH-P by EPA 8015B
Surr; 4-Bromofluorobenzene	92	70-130		%Rec	5/23/2017 TPH-P by EPA 8015B
Solids, Total Suspended (TSS)	44.7	2.5		mg/L	5/24/2017 TSS by SM2540
Chloromethane	ND	2		μg/L	5/23/2017 VOCs by EPA 8260
/inyl chloride	ND	1		μg/L	5/23/2017 VOCs by EPA 8260
Chloroethane	ND	1		µg/L	5/23/2017 VOCs by EPA 8260
Bromomethane	ND	2		µg/L	5/23/2017 VOCs by EPA 8260
richlorofluoromethane	ND	1		μg/L	5/23/2017 VOCs by EPA 8260
,1-Dichloroethene	ND	1		μg/L	5/23/2017 VOCs by EPA 8260
Dichloromethane	ND	2		μg/L	5/23/2017 VOCs by EPA 8260
rans-1 2-Dichloroethene	ND	1		μg/L	5/23/2017 VOCs by EPA 8260
,1-Dichloroethane	ND	1		μg/L	5/23/2017 VOCs by EPA 8260
is-1,2-Dichloroethene	ND	1		μg/L	5/23/2017 VOCs by EPA 8260
Chloroform	ND	1		μg/L	5/23/2017 VOCs by EPA 8260
,2-Dichtoroethane	ND	1		μg/L	5/23/2017 VOCs by EPA 8260
,1,1-Trichloroethane	ND	1		µg/L	5/23/2017 VOCs by EPA 8260
arbon tetrachloride	ND	1		μg/L	5/23/2017 VOCs by EPA 8260
Benzene	ND	0.5		μg/L	5/23/2017 VOCs by EPA 8260
,2-Dichloropropane	ND	1		μg/L	5/23/2017 VOCs by EPA 8260
richloroethene	ND	1		µg/L	5/23/2017 VOCs by EPA 8260
Bromodichloromethane	ND	1		μg/L	5/23/2017 VOCs by EPA 8260
is-1,3-Dichtoropropene	ND	1		μg/L	5/23/2017 VOCs by EPA 8260
rans-1,3-Dichloropropene	ND	1		μg/L	5/23/2017 VOCs by EPA 8260
,1,2-Trichloroethane	ND	1		μg/L	5/23/2017 VOCs by EPA 8260
oluene	ND	0.5		µg/L	5/23/2017 VOCs by EPA 8260
Dibromochloromethane	ND	1		μg/L	5/23/2017 VOCs by EPA 8260
etrachloroethene	ND	1		μg/L	5/23/2017 VOCs by EPA 8260
Chlorobenzene	ND	1		μg/L	5/23/2017 VOCs by EPA 8260
thylbenzene	ND	0.5		μg/L	5/23/2017 VOCs by EPA 8260
n,p-Xylene	ND	0.5		µg/L	5/23/2017 VOCs by EPA 8260
Fromoform	ND	1		μg/L	5/23/2017 VOCs by EPA 8260
-Xylene	ND	0,5		μg/L	5/23/2017 VOCs by EPA 8260
,1,2,2-Tetrachloroethane	ND	1		µg/L	5/23/2017 VOCs by EPA 8260
,3-Dichlorobenzene	ND	1		μg/L	5/23/2017 VOCs by EPA 8260
,4-Dichlorobenzene	ND	1		μg/L	5/23/2017 VOCs by EPA 8260
,2-Dichlorobenzene	ND	1		µg/L	5/23/2017 VOCs by EPA 8260
Surr: 1,2-Dichloroethane-d4	97	70-130		%Rec	5/23/2017 VOCs by EPA 8260
Surr: Toluene-d8	107	70-130		%Rec	5/23/2017 VOCs by EPA 8260
Surr: 4-Bromofluorobenzene	92	70-130		%Rec	5/23/2017 VOCs by EPA 8260 Page 2

:#OM

1705235 05-Jun-17

255 Glendale Ave, #21 Sparks, Nevada 89431 TEL. (775) 355-1044 FAX. (775) 355-0406

Alpha Analytical, Inc.

Website: www.alpha-analytical.com

1313 BatchID: Tahoe Donner Association Maintenance Yard Project: Client:

Sample ID MB-1313	Š	SampType: MBL	K	TestCode: TPH/E_W	Units	Units: mg/L		Prep Date: 5	5/23/2017	RunNo: 843	843	
Client ID: PBW		Batch ID: 1313		TestNo: SW8015	SW8015	015	Ans	Analysis Date: 5/23/2017	123/2017	SeqNo:	SeqNo: 20754	
Analyte	Result	POL	SPK value	SPK value SPK Ref Val	%REC	LowLimit	HighLimit	%REC LowLimit HighLimit RPD Ref Val	%RP	%RPD RPDLimit Qual	Limit	Qual
TPH-E (DRO)	S.	0.05										
TPH-E (ORO)	2	0.5										
Surr: Nonane 0	0.136		0.15		20.7	52.51	145.49					

Sample ID LCS-1313	Samp	SampType: LCS	ĭ	TestCode: TPH/E_W		Units: mg/L	4	Prep Date: 5/23/2017		RunNo: 843	
Client ID: LCSW	Batc	Batch ID: 1313		TestNo: SW8015	SW8015	15	Analy	Analysis Date: 5/23/2017		SeqNo: 20755	īο
Analyte	Result	Pol	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%REC LowLimit HighLimit RPD Ref Val	%RPD	%RPD RPDLimit Qual	Qual
TPH-E (DRO)	2.43	0.05	2.5	0	97.4	69.51	130.49				
Surr: Nonane	0.148		0,15		2.86	52.51	145,49				

Sample ID 1705192-01AMSD	Samp	SampType: MSD		TestCode: TPH/E_W	Units	Units: mg/L		Prep Date: 5/23/2017	5/23/2017	Run	RunNo: 843	
Client ID: BatchQC	Batc	Batch ID: 1313		TestNo: SW8015	SW8015	Н5	Ani	Analysis Date: 5/23/2017	5/23/2017	Sed	SeqNo: 20758	60
Analyte	Result	Pal	SPK value	SPK value SPK Ref Val	%REC	LowLimit	HighLimit	%REC LowLimit HighLimit RPD Ref Val		R CHS	%RPD RPDLimit Qual	Qual
TPH-E (DRO)	2,65	0.1	2.5	0.1230	101	50.51	151.49	2.57		2.9	40	
Surr: Nonane	0.292		0.3		97.3	52.51	145.49	0.278			0	

ND Not Detected at the Reporting Limit Qualifiers:

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limit

Alpha Analytical, Inc.

255 Glendale Ave, #21 Sparks, Nevada 89431 TEL: (775) 355-1044 FAX: (775) 355-0406

Website, www.alpha-analytical.com

QC SUMMARY REPORT

WO#:

1705235 05-Jun-17

> Tahoe Donner Association Project: Client:

Maintenance Yard

BatchID: 1313

Sample ID 1705192-01AMS	Samp	SampType: MS	Ē	TestCode: TPH/E_W	Units	Units: mg/L		Prep Date:	5/23/2017	RunNo: 843	13	
Client ID: BatchQC	Batc	Batch ID: 1313		TestNo: SW8015	SW8015	115	Ana	Analysis Date: 5/23/2017	5/23/2017	SeqNo: 20757	757	
Analyte	Result	POL	SPK value	SPK value SPK Ref Val	%REC	LowLimit	HighLimit	%REC LowLimit HighLimit RPD Ref Val		%RPD RPDLimit	iit Qual	<u> </u>
TPH-E (DRO)	2.57	0.1	2.5	0.1230	98.0	50,51	151.49					
Surr: Nonane	0.278		0.3		92.7	52.51	145.49					

ND Not Detected at the Reporting Limit Qualifiers:

R RPD outside accepted recovery limits

Spike Recovery outside accepted recovery limit

Alpha Analytical, Inc.

255 Glendale Ave, #21 Sparks, Nevada 89431 TEL: (775) 355-1044 FAX: (775) 355-0406

Website, www.alpha-analytical.com

QC SUMMARY REPORT

1705235 WO#:

05-Jun-17

A1308

BatchID:

Tahoe Donner Association Client:

Maintenance Yard

Project:

Sample ID MB-1308	SampType: MBLK	-	FestCode: VOC_W	Units:	Units: µg/L	4	Prep Date:	5/23/2017	RunNo: 802	
Client ID: PBW	Batch ID: A1308	801	TestNo: SW8260B			Anal	Analysis Date: 5/23/2017		SeqNo: 19694	4
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	%REC LowLimit HighLimit RPD Ref Val	RPD Ref V		%RPD RPDLimit	Qual
110	£ 4									

Chloromethane	D 2		
Vinyl chloride ND	1		
Chloroethane	D 1		
Bromomethane	D 2		
Trichlorofluoromethane	1		
1,1-Dichloroethene ND	1		
Dichloromethane	D 2		
trans-1,2-Dichloroethene ND	D 1		
1,1-Dichloroethane ND	1		
cis-1,2-Dichloroethene ND	0		
Chloroform ND	1		
1,2-Dichloroethane ND	1		
1,1,1-Trichloroethane ND	0		
Carbon tetrachloride ND	0		
Benzene ND	D 0.5		
1,2-Dichloropropane ND	0		
Trichloraethene	D 1		
Bromodichloromethane ND	1		
cis-1,3-Dichloropropene	1		
trans-1,3-Dichloropropene ND	D 1		
1,1,2-Trichloroethane ND	D 1		
Toluene	0,5		
Dibromochforomethane ND	-		
Qualifiers: ND Not Detected at the Reporting Limit	I R	RPD outside accepted recovery limits	S Spike Recovery outside accepted recovery limit

WO#:

1705235 05-Jun-17

Batch1D: A1308

Sparks, Nevada 89431 Website: www.alpha-analytical.com TEL.: (775) 355-1044 FAN: (775) 355-0406

Alpha Analytical, Inc.

255 Glendale Ave, #21

Project:

Client:

Tahoe Donner Association Maintenance Yard

Sample ID MB-1308	Sami	SampType: MBLK		TestCode: VOC W	Units	Units: ua/L		Prep Date: 5/23/2017	5/23/2017	RunNo: 802	802	
Cliant ID: 00th		2				i h					4	
Cuelling Page	par	Batch ID: A1308	92	lestNo: SW8260B			Ana	Analysis Date: 5/23/2017	5/23/2017	SeqNo: 19694	19694	
Analyte	Result	POL	SPK value	SPK value SPK Ref Val	%REC	LowLimit	HighLimit	%REC LowLimit HighLimit RPD Ref Val	al %RPD	D RPDLimit		Qual
Tetrachloroethene	QN	-										
Chlorobenzene	ND	-										
Ethylbenzene	Q	0.5										
m.p-Xylene	Q	0.5										
Bromoform	QN	, -										
o-Xylene	QN	0,5										
1,1,2,2-Tetrachioroethane	ON	, -										
1,3-Dichlorobenzene	Q	-										
1,4-Dichlorobenzene	Q	-										
1,2-Dichlorobenzene	Q	-										
Surr: 1,2-Dichloroethane-d4	9.28		10.00		92.8	69.51	130,49					
Surr. Toluene-d8	10.8		10.00		108	69.51	130.49					
Surr. 4-Bromofluorobenzene	10		10.00		100	69.51	130.49					

Sample ID LCS-1308	308	Sam	SampType: LCS		TestCode: VOC_W	Units	Units: µg/L		Prep Date: 5/23/2017		RunNo: 802	
Client ID: LCSW		Ba	Batch ID: A1308	90	TestNo: SW8260B			Ana	Analysis Date: 5/23/2017		SeqNo: 19692	92
Analyte		Result	POL	SPK value	SPK value SPK Ref Val	%REC	LowLimit	HighLimit	%REC LowLimit HighLimit RPD Ref Val	%RPD	%RPD RPDLimit Qual	Qual
Chloromethane		9.18	2	10.00	0	91.8	39.51	145.49				
Vinyl chloride		11	-	10.00	0	110	69.51	130.49				
Chloroethane		12	-	10.00	0	120	37.51	156.49				
Bromomethane		6.74	2	10.00	0	67.4	13.51	162.49				
Qualifiers: ND	ND Not Detected at the Reporting Limit	ing Limit	~	RPD outside ac	RPD outside accepted recovery limits		S Spike	Recovery out	Spike Recovery outside accepted recovery limit	y fimit		

Alpha Analytical, Inc.

255 Glendale Ave. #21

Sparks, Nevada 89431 TEL. (775) 355-1044 FAN: (775) 355-0406 Website, www.alpha-analytical.com

QC SUMMARY REPORT

1705235 WO#:

05-Jun-17

A1308

BatchID:

Tahoe Donner Association Maintenance Yard **Project:** Client:

Sample ID LCS-1308	Š	SampTvpe: LCS		TestCode: VOC W	Units	Units: ua/L		Prep Date:	5/23/2017	RunNo: 802	802
Client ID: LCSW		Batch ID: A1308		TestNo: SW8260B		2	Ana		5/23/2017	SeqNo: 19692	19692
Analyte	Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	PD RPDLimit	imit Qual
Trichlorofluoromethane	12	-	10.00	0	120	45.51	154.49				
1,1-Dichloroethene	11.2	_	10.00	0	112	69.51	130.49				
Dichloromethane	9.75	2	10.00	0	97.5	68.51	130.49				
trans-1,2-Dichloroethene	11.4	-	10.00	0	114	69.51	130.49				
1,1-Dichloroethane	10.7	-	10.00	0	107	69.51	130.49				
cis-1,2-Dichloroethene	10.2	-	10.00	0	102	69.51	130.49				
Chloroform	10.3	-	10.00	0	103	69.51	130.49				
1,2-Dichloroethane	96'6	-	10.00	0	8.66	69.51	133.49				
1,1,1-Trichloroethane	10.7	-	10.00	0	107	69.51	135.49				
Carbon tetrachloride	Ξ	-	10.00	0	110	62.51	143.49				
Вепzепе	10.3	0.5	10.00	0	103	69.51	130.49				
1,2-Dichloropropane	10.1	-	10.00	0	101	69.51	130.49				
Trichloroethene	1	-	10.00	0	110	67.51	138.49				
Bromodichforomethane	9.89	-	10.00	0	98.9	57.51	147.49				
cis-1,3-Dichloropropene	9.13	-	10.00	0	91.3	69.51	130.49				
trans-1,3-Dichloropropene	8.71	-	10.00	0	87.1	69.51	131.49				
1,1,2-Trichloroethane	10.1	-	10.00	0	101	69.51	130.49				
Toluene	10.9	9.0	10.00	0	110	69.51	130.49				
Dibromochloromethane	9.76	-	10.00	0	9.76	48.51	147.49				
Tetrachloroethene	11.7	-	10.00	0	117	69.51	130.49				
Chlorobenzene	10.5	-	10.00	0	105	69.51	130.49				
Ethylbenzene	Ξ	9'0	10.00	0	110	69.51	130.49				
m,p-Xylene	10.9	0.5	10.00	0	109	64.51	139.49				
Qualifiers: ND Not Detected at the Reporting Limit	g Limit	~	RPD outside ac	RPD outside accepted recovery limits		S Spike	Recovery out	Spike Recovery outside accepted recovery limit	ecovery limit		

WO#:

1705235

05-Jun-17

Sparks, Nevada 89431 TEL: (775) 355-1044 FAX: (775) 355-0406 Website: www.alpha-analytical.com

Alpha Analytical, Inc.

255 Glendale Ave, #21

Maintenance Yard

Tahoe Donner Association

Client:

Batch1D: A1308 Project:

sample ID LCS-1308	S	SampType: LCS		TestCode: VOC_W	Units	Units: µg/L	۵	Prep Date: 5/23/2017		RunNo: 802	
Client ID: LCSW		Batch ID: A1308	80	TestNo: SW8260B			Analy	Analysis Date: 5/23/2017		SeqNo: 19692	392
Analyte	Result	POL	SPK value	SPK Ref Val	%REC	LowLimit	"REC LowLimit HighLimit RPD Ref Val	RPD Ref Val	%RPD	%RPD RPDLimit Qual	Qual
Bromaform	9.25	-	10.00	0	92.5	59.51	144.49				
o-Xylene	10.9	0.5	10,00	0	109	69.51	130.49				
1,1,2,2-Tetrachloroethane	68'6	-	10,00	0	98.9	69.51	130.49				
1,3-Dichlorobenzene	11.5	1	10.00	0	115	69.51	130.49				
1,4-Dichlorobenzene	11.5	-	10.00	0	115	69,51	130.49				
1,2-Dichlorobenzene	10.8	-	10.00	0	108	69.51	130,49				
Surr: 1,2-Dichloroethane-d4	9.5		10.00		95.0	69.51	130.49				
Surr. Toluene-d8	10.3		10.00		103	69.51	130.49				
Surr: 4-Bromofluorobenzene	10.3		10,00		103	69.51	130,49				

Sample ID 1705223-01AMSD	Sar	SampType: MSD		TestCode: VOC_W	Units	Units: µg/L		Prep Date: 5/23/2017		RunNo: 802	
Client ID; BatchQC	80	Batch ID: A1308	90	TestNo: SW8260B			Ans	Analysis Date: 5/23/2017		SeqNo: 19684	_
Analyte	Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%REC LowLimit HighLimit RPD Ref Val	%RPD	%RPD RPDLimit	Qual
Chloromethane	27.4	10	50,00	0	54.7	25.51	146.49	24.9	9.6	30	
Vinyl chloride	36.3	2	50.00	O	72.6	45,51	142.49	32.8	10	30	
Chloroethane	45.3	S.	20.00	0	2'06	24.51	164,49	43.2	4.9	8	
Bromomethane	27.7	10	50.00	0	55.3	9,51	172.49	21.7	24	30	
Trichlorofluoromethane	47.4	5	50.00	0	94.7	31.51	164,49	43.7	•	30	
1,1-Dichloroethene	46.2	5	50.00	0	92.4	61.51	133.49	43	7.3	30	
Dichloromethane	44.7	10	50.00	0	89.5	68,51	130.49	41	8.7	30	
trans-1,2-Dichloroethene	20.7	ည	20.00	0	101	66.51	131.49	46.4	6	30	
Qualifiers: ND Not Detected at the Reporting Limit	Reporting Limit	~	RPD outside ac	RPD outside accepted recovery limits		S Spike	Recovery out	Spike Recovery outside accepted recovery limit	Imit		ŀ

Alpha Analytical, Inc 255 Glendale Ave, #21 WO#: 1705235

05-Jun-17

A1308

BatchID:

- 1 July 1

Sparks, Nevada 89431 TEL: (775) 355-1044 FAX: (775) 355-0406 Website: www.alpha-analytical.com

Tahoe Donner Association Maintenance Yard

Client: Project:

Sample ID 1705223-01AMSD	"	SampType: MSD		TestCode: VOC_W	Units	Units: µg/L		Prep Date: 5/23/2017	2017	RunNo: 802	
Client ID: BatchQC		Batch ID: A1308	90	TestNo: SW8260B			Añ	Analysis Date: 5/23/2017		SeqNo: 19684	
Analyte	Result	POL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1-Dichloroethane	50.1	£	20.00	0	100	66,51	130.49	46.2	8.1	30	
cis-1,2-Dichloroethene	47.8	S.	50.00	0	95.7	69.51	130.49	43.3	10	30	
Chloroform	48.8	S	50.00	0	9.76	68.51	130.49	45.1	7.7	30	
1,2-Dichloroethane	48.8	9	90.00	0	7.76	63.51	139.49	44.9	8.3	30	
1,1,1-Trichloroethane	49.2	ß	50.00	0	98.4	64.51	139.49	45.7	7.4	30	
Carbon tetrachloride	48.5	5	50.00	0	97.0	55.51	146.49	44.7	8.2	30	
Benzene	47.6	2.5	50.00	0	95.3	66.51	134.49	44.3	7.2	30	
1,2-Dichloropropane	49.5	S	50.00	0	0.66	68.51	134.49	44.8	9.9	30	
Trichloroethene	20	5	50.00	0	100	67,51	138.49	46.2	8.1	30	
Bromodichloromethane	48	ß	50.00	0	0.96	57.51	147.49	44	8.8	30	
cis-1,3-Dichloropropene	40.1	ည	50.00	0	80.2	60.51	130.49	36,9	8.4	30	
trans-1,3-Dichloropropene	42.3	ı	50.00	0	84.7	61,51	131,49	38.1	Ξ	30	
1,1,2-Trichloroethane	49.3	ιΩ	50.00	0	98.7	69.51	131.49	46.3	6.2	30	
Toluene	51.1	2.5	50.00	0	102	37.51	130.49	49.2	3.6	30	
Dibromochloromethane	47.4	S	50.00	0	94.7	48.51	147.49	43.1	9.5	30	
Tetrachloroethene	52.2	5	50.00	0	104	62.51	134.49	47.8	8.8	30	
Chlorobenzene	20	S	50.00	0	100	69.51	130.49	45.8	8.9	30	
Ethylbenzene	50.7	2.5	90.00	0	101	69.51	130.49	47.5	6.5	30	
m,p-Xylene	9.09	2.5	50.00	0	101	64.51	139.49	48.8	3.8	30	
Bromoform	44.9	co	50.00	0	89.9	59.51	144.49	41.3	8.3	30	
o-Xylene	51.6	2.5	50.00	0	103	68.51	130.49	48.7	5.8	30	
1,1,2,2-Tetrachloroethane	50.2	S	50.00	0	100	66.51	134.49	45.7	9.3	30	
1,3-Dichlorobenzene	54	5	50.00	0	108	69.51	130.49	49	9.7	30	

Page 9 of 20

S Spike Recovery outside accepted recovery limit

R RPD outside accepted recovery limits

ND Not Detected at the Reporting Limit

Qualifiers:

Alpha Analytical, Inc. 255 Glendale Ave, #21 Sparks Nevada 89431

TEL: (775) 355-1044 FAX: (775) 355-0406 Website: www.alpha-analytical.com

WO#:

1705235

05-Jun-17

A1308

Batch1D:

Tahoe Donner Association Client:

Maintenance Yard Project:

Qual SeqNo: 19684 RunNo: 802 **RPDLimit** e e 0 0 %RPD 8.6 Analysis Date: 5/23/2017 Prep Date: 5/23/2017 HighLimit RPD Ref Val 49.6 50.8 46.8 50.4 50.1 130.49 130.49 130.49 130.49 130.49 LowLimit 69.51 69.51 69.51 69.51 69.51 Units: µg/L %REC 110 104 101 TestNo: SW8260B TestCode: VOC_W SPK value SPK Ref Val 0 0 50.00 50.00 50.00 50.00 Batch ID: A1308 SampType: MSD Pol Result 51.8 50,3 50.7 5 Sample ID 1705223-01AMSD Surr: 4-Bromofluorobenzene Surr: 1,2-Dichloroethane-d4 Client ID: BatchQC 1,4-Dichlorobenzene 1,2-Dichlorobenzene Surr: Toluene-d8 Analyte

Sample ID 1705223-01AMS	San	SampType: MS	:	TestCode: VOC_W	Units	Units: µg/L		Prep Date: 5/23/2017		RunNo: 802	
Client ID: BatchQC	ĕ	Batch ID: A1308	801	TestNo: SW8260B			Anal	Analysis Date: 5/23	5/23/2017	SeqNo: 19683	383
Analyte	Result	POL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%REC LowLimit HighLimit RPD Ref Val	%RPD	RPDLimit	Qual
Chloromethane	24.9	10	50.00	0	49.7	25.51	146.49				
Vinyl chloride	32.8	ວ	50.00	0	65.5	45.51	142.49				
Chloroethane	43.2	ĸ	90.00	0	86.3	24.51	164.49				
Bromomethane	21.7	10	50.00	0	43.5	9.51	172,49				
Trichlorofluoromethane	43.7	2	50.00	0	87.4	31.51	164.49				
1,1-Dichloroethene	43	5	50.00	0	85.9	61,51	133,49				
Dichloromethane	41	10	50.00	0	82.0	68.51	130.49				
trans-1,2-Dichloroethene	46.4	Ŋ	50.00	0	92.7	66.51	131.49				
1.1-Dichloroethane	46.2	S	50.00	0	92.5	66,51	130,49				
cis-1,2-Dichloroethene	43.3	ນ	50.00	0	86.5	69.51	130,49				
Chloroform	45.1	ιΩ	50.00	0	90.3	68.51	130.49				
1,2-Dichloroethane	44.9	ις.	20.00	0	89.9	63.51	139.49				
Qualifiers: ND Not Detected at the Reporting Limit	rting Limit	~	RPD outside ac	PD outside accepted recovery limits		S Spike	Recovery outs	Spike Recovery outside accepted recovery limit	very limit		

WO#:

1705235 05-Jun-17

Tahoe Donner Association

Client:

TEL: (775) 355-1044 FAX: (775) 355-0406 Website, www.alpha-analytical.com

Alpha Analytical, Inc. 255 Glendale Ave. #21 Sparks, Nevada 89431

BatchID: A1308 Maintenance Yard **Project:**

Sample ID 1705223-01AMS	SampType: MS	pe: MS	Te	TestCode: VOC_W	Units	Units: µg/L		Prep Date: 5/23/2017	2017	RunNo: 802	
Client ID: BatchQC	Batch ID:	ID: A1308	8	TestNo: SW8260B			Ana	Analysis Date: 5/23/2017	2017	SeqNo: 19683	
Analyte	Result	POL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Quai
1,1,1-Trichloroethane	45.7	5	50,00	0	91,4	64.51	139,49				
Carbon tetrachloride	44.7	2	50.00	0	89.4	55.51	146.49				
Benzene	44.3	2.5	50.00	0	88.6	66.51	134.49				
1,2-Dichloropropane	44.8	S	20.00	0	9.68	68.51	134,49				
Trichloroethene	46.2	S	20,00	0	92.3	67,51	138.49				
Bromodichloromethane	44	2	50.00	0	98.0	57.51	147.49				
cis-1,3-Dichloropropene	36.9	S	90.00	0	73.7	60.51	130.49				
trans-1,3-Dichloropropene	38.1	5	20 00	0	76.1	61,51	131.49				
1,1,2-Trichloroethane	46.3	2	50.00	0	92.7	69.51	131,49				
Toluene	49.2	2.5	50.00	0	98.5	37.51	130.49				
Dibromochloromethane	43.1	က	20.00	0	86.1	48.51	147.49				
Tetrachioroethene	47.8	S	50.00	0	95.7	62.51	134.49				
Chlorobenzene	45.8	S	50.00	0	91.6	69.51	130.49				
Ethylbenzene	47.5	2.5	50.00	0	95.1	69.51	130.49				
m.p-Xylene	48.8	2.5	50.00	0	97.5	64.51	139.49				
Bromoform	41.3	ည	50.00	0	82.7	59.51	144.49				
o-Xylene	48.7	2.5	50.00	0	97.3	68.51	130.49				
1,1,2,2-Tetrachloroethane	45.7	S	50.00	0	91.4	66.51	134.49				
1,3-Dichlorobenzene	49	ĸ	50.00	0	98.0	69.51	130.49				
1,4-Dichlorobenzene	50.8	ည	90.00	0	102	69.51	130.49				
1,2-Dichlorobenzene	46.8	ď	50.00	0	93.6	69.51	130.49				
Surr: 1,2-Dichloroethane-d4	49.6		50.00		99.2	69.51	130.49				
Surr: Toluene-d8	50.4		20.00		101	69.51	130.49				
Qualiffers: ND Not Detected at the Reporting Limit	Limit	2	PD outside acc	RPD outside accepted recovery limits		S Spike	Recovery out	Spike Recovery outside accepted recovery limit	ry limit		

Page 11 of 20

Alpha Analytical, Inc.

255 Glendale Ave, #21 Sparks, Nevada 89431

TEL: (775) 355-1044 FAX: (775) 355-0406 Website www.alpha-analytical.com

QC SUMMARY REPORT

:#OM

1705235 05-Jun-17

> Tahoe Donner Association Project: Client:

Maintenance Yard

A1308 Batch ID:

Sample ID 1705223-01AMS	0,	SampType: MS	F	TestCode: VOC_W	Units	Units: µg/L		Prep Date:	5/23/2017	RunNo	802	
Client ID: BatchQC		Batch ID: A1308	80	TestNo: SW8260B			Ana	Analysis Date:	5/23/2017	SeqNo	SeqNo: 19683	
Analyte	Result	POL	SPK value	SPK Ref Vai	%REC	LowLimit	HighLimit	RPD Ref Val	I %RPD		RPDLimit	Qual
Surr: 4-Bromofluorobenzene	50.1		50.00		100	69.51	130,49					

Qualifiers:

Alpha Analytical, Inc

255 Glendale Ave. #21 Sparks, Nevada 89431

Sparks, Nevada 89431 TEL. (775) 355-1044 FAX. (775) 355-0406 Website, www. alpha-analytical.com

QC SUMMARY REPORT

WO#: 1705235

05-Jun-17

BatchID: A1308

Client: Tahoe Donner Association
Project: Maintenance Yard

Client ID: PBW B			TestCode: TPH/P_W	Units	Units: mg/L	_	Prep Date: (5/23/2017 F	RunNo: 802	
	Batch ID: A1308		TestNo: SW8015			Ana	Analysis Date: 5/23/2017		SeqNo: 19728	
Analyte Result	POL	SPK value	SPK value SPK Ref Val	%REC	LowLimit	HighLimit	%REC LowLimit HighLimit RPD Ref Val		%RPD RPDLimit Qual	Qual
TPH-P (GRO) ND	0.05									
Surr; 1,2-Dichloroethane-d4 0,00928		0.01		92.8	69.51	130.49				
Surr: Toluene-d8 0.0108		0.01		108	69.51	130.49				
Surr; 4-Bromofluorobenzene 0.01		0.01		100	69.51	130.49				

Result PQL SPK value SPK Ref Val %REC LowLimit H 0.363 0.05 0.4 0 90.8 69.51 0.00919 0.014 0.01 91.9 69.51 0.0104 0.01 104 69.51 0.0102 0.01 0.01 0.01 69.51	Sample ID GLCS-1308	Samp	SampType: GLC:	ī. S	TestCode: TPH/P_W	Units:	Units: mg/L	_	Prep Date: 5/23/2017	5/23/2017	RunNo: 802	02	
Result PQL SPK value SPK Ref Val 0.363 0.05 0.4 0 0.00919 0.01 0.0104 0.01 0.0104 0.0104 0.0104 0.	Client ID: BatchQC	Batc	ch ID: A130	8	TestNo: SW8015			Ana	lysis Date:	5/23/2017	SeqNo: 19726	9726	
0.363 0.05 0.4 0 90.8 69.51 hloraethane-d4 0.00919 0.01 91.9 69.51 e-d8 0.0104 0.01 104 69.51 hloraparana 0.0102 0.01	Analyte	Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Va	at %RPD	D RPDLimit Qual	ğ	<u> </u>
0.00919 0.01 91.9 69.51 0.0104 0.01 104 69.51	TPH-P (GRO)	0.363	0.05	0.4	0	90.8	69.51	130.49					
0.0104 0.01 104 69.51	Surr: 1,2-Dichloroethane-d4	0.00919		0.01		91.9	69.51	130.49					
0.0102 0.01	Surr: Toluene-d8	0.0104		0.01		104	69.51	130,49					
	Surr: 4-Bromofluorobenzene	0.0102		0.01		102	69.51	130,49					

Sample ID 1705223-01AGSD	San	SampType: GSD		TestCode: TPH/P_W		Units: mg/L		Prep Date: 5/23/2017	12017	RunNo: 802	
Client ID: BatchQC	Ba	Batch ID: A1308	80	TestNo: SW8015			Αu	Analysis Date: 5/23/2017	/2017	SeqNo: 19737	1
Analyte	Result	POL	SPK value	SPK value SPK Ref Val	%REC	LowLimit	HighLimit	%REC LowLimit HighLimit RPD Ref Val	%RPD	%RPD RPDLimit Qual	Qual
TPH-P (GRO)	1.74	0.25	2	0	86.9	53.51	143.49	1.39	22	23	
Surr: 1,2-Dichloroethane-d4	0.0513		0.05		103	69.51	130.49	0.0512		0	
Qualifiers: ND Not Detected at the Reporting Limit	Reporting Limit	~	RPD outside ac	PD outside accepted recovery limits		S Spike	Recovery or	S Spike Recovery outside accepted recovery limit	very limit		

Page 13 of 20

Alpha Analytical, Inc.

255 Glendale Ave, #21

Sparks. Nevada 89431 TEL: (775) 355-1044 FAX: (775) 355-0406 Website: www.alpha-analytical.com

QC SUMMARY REPORT

WO#:

A1308

Batch1D:

1705235 05-Jun-17

> Tahoe Donner Association Maintenance Yard Project: Client:

%RPD RPDLimit Qual SeqNo: 19737 RunNo: 802 0 0 Prep Date: 5/23/2017 Analysis Date: 5/23/2017 LowLimit HighLimit RPD Ref Val 0.0506 0.051 130.49 69.51 69.51 Units: mg/L %REC 102 TestCode: TPH/P_W TestNo: SW8015 SPK value SPK Ref Val 0.05 Batch ID: A1308 SampType: GSD PQL Result 0.0509 Sample ID 1705223-01AGSD Surr: 4-Bromofluorobenzene Client ID: BatchQC Surr: Toluene-d8 Analyte

Sample ID 1705223-01AGS	Sai	SampType: GS	ľ	TestCode: TPH/P W	Units	Units: ma/L		Pren Date	5/23/2017	ة ا	DunMo: 902	
Client ID: BatchQC	•	Batch ID: A1308		TestNo: SW8015		1	Апа	Analysis Date:	5/23/2017	Seq	SeqNo: 19736	rn.
Analyte	Result	POL	SPK value	SPK value SPK Ref Val	%REC	LowLimit	HighLimit	%REC LowLimit HighLimit RPD Ref Val		PD R	%RPD RPDLimit Qual	Qual
TPH-P (GRO)	1.39	0.25	2	0	69.5	53.51	143.40					
Surr: 1,2-Dichloroethane-d4	0.0512		0.05	t.	102	69.51	130.49					
Surr: Toluene-d8	0.0506		0.05		101	69.51	130.49					
Surr: 4-Bromofluorobenzene	0.051		0.05		102	69.51	130.49					

ND Not Detected at the Reporting Limit Qualifiers:

R RPD outside accepted recovery limits

Spike Recovery outside accepted recovery limit *ر*د

Alpha Analytical, Inc.

255 Glendale Ave, #21

Sparks, Nevada 89431 TEL: (775) 355-1044 FAN: (775) 355-0406 Website www.alpha-analytical.com

QC SUMMARY REPORT

WO#:

05-Jun-17

Batch1D: W0523SS

1705235

Tahoe Donner Association Maintenance Yard **Project:** Client:

Qual SeqNo: 20297 RunNo: 825 **%RPD** RPDLimit Analysis Date: 5/24/2017 Prep Date: 5/24/2017 "REC LowLimit HighLimit RPD Ref Val 130,49 54.51 Units: mg/L 92.0 TestCode: TSS_W TestNo: Solids SPK value SPK Ref Val 0 100 Batch ID: W0523SS SampType: LCS РО 2,5 Result 92 Solids, Total Suspended (TSS) Sample ID WC170327-01 Client ID: LCSW Analyte

Sample ID MBLK	S	SampType: MBLK		TestCode: TSS_W	Units	Units: mg/L		Prep Date: 5/24/2017	5/24/2017	Run	RunNo: 825	
Client ID: PBW		Batch ID: W0523	238S	TestNo: Solids			Ani	Analysis Date: 5/24/2017	5/24/2017	Sed	SeqNo: 20296	9
Analyte	Result	POL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%REC LowLimit HighLimit RPD Ref Val	·	RD R	%RPD RPDLimit Qual	Qua
Solids, Total Suspended (TSS)	Q.	2.5										

~

Sparks, Nevada 89431 Alpha Analytical, Inc. 255 Glendale Ave, #21 TEL. (775) 355-1044 FAN. (775) 355-0406

Website: www.alpha-analytical.com

QC SUMMARY REPORT

1705235 WO#:

05-Jun-17

Tahoe Donner Association Maintenance Yard **Project:** Client:

W05310G Batch ID:

Sample ID MBLK	Sa	SampType: MBLK	ВСК	TestCode: O&G_HEM_		Units: mg/L		Prep Date: 5/31/2017	5/31/2017	RunNo: 867	867
Citent ID: PBW	ш	Batch ID: W05310G	/0531OG	TestNo: E1664A	٧		An	Analysis Date:	5/31/2017	SeqNo: 21282	21282
Analyte	Result	Pal	SPK value	alue SPK Ref Val	%REC	%REC LowLimit HighLimit RPD Ref Val	HighLimit	RPD Ref V		%RPD RPDI	RPDLimit Qual
Oil & Grease, HEM	QN Q	£.				!				!	

Qual SeqNo: 21283 RunNo: 867 **%RPD** RPDLimit Analysis Date: 5/31/2017 Prep Date: 5/31/2017 %REC LowLimit HighLimit RPD Ref Val 114.49 77.51 Units: mg/L 97.5 TestCode: O&G_HEM_ TestNo: E1664A SPK Ref Val 0 SPK value 40 Batch ID: W05310G SampType: LCS 집 ď Result 33 Client ID: LCSW Oil & Grease, HEM Sample ID LCS Analyte

Sample ID 1705300-01DMS	Sar	SampType: MS		TestCode: O&G HEM	-	Units: mail		Pren Date	E/24/2047	Dunkle, oca		
Client ID: BatchQC	B	Batch ID: W0531	90	TestNo: E1664A		ı d	Ans	Analysis Date: 5/31/2017	5/31/2017	SeqNo: 21284	1284	
Analyte	Result	Pot	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%REC LowLimit HighLimit RPD Ref Val		%RPD RPDLimit Qual	ō	100
Oil & Grease, HEM	37.8	2	40	0	94.5	77.51	114.49					

Alpha Analytical, Inc 255 Glendale Ave, #21 Sparks, Nevada 89431 TEL: (775) 355-1044 FAX: (775) 355-0406 Website: www.alpha-analytical.com

Definition Only

WO#:

1705235

Date:

Definitions:

- ND = Not Detected
- C = Reported concentration includes additional compounds uncharacteristic of common fuels and lubricants.
- D = Reporting Limits were increased due to high concentrations of non-target analytes.
- H = Reporting Limits were increased due to the hydrocarbons present in the sample.
- J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- K = DRO concentration may include contributions from lighter-end hydrocarbons (e.g. gasoline) that elute in the DRO range.
- L = DRO concentration may include contributions from heavier-end hydrocarbons (e.g. motor oil) that elute in the DRO range.
- M = Manual Integration used to determine area response.
- O = Reporting Limits were increased due to sample foaming.
- V = Reporting Limits were increased due to high concentrations of target analytes.
- X = Reporting Limits were increased due to sample matrix interferences.
- Z = DRO concentration may include contributions from lighter-end (e.g. gasoline) and heavier-end (e.g. motor oil) hydrocarbons that elute in the DRO range.
- S50 = The analysis of the sample required a dilution such that the surrogate concentration was diluted below the laboratory acceptance criteria. The laboratory control sample was acceptable.
- S51 = Surrogate recovery could not be determined due to the presence of co-eluting hydrocarbons.
- S54 = Surrogate recovery was below laboratory acceptance limits.
- S55 = Surrogate recovery was above laboratory acceptance limits.

Report CC's Sean Connors

CHAIN-OF-CUSTODY RECORD

Alpha Analytical, Inc.

Sparks, Nevada 89431 255 Glendale Ave, #21

Report Due By: EDD Required:

FAX: (775) 355-0406 TEL: (775) 355-1044

TDA1705235 WorkOrder:

06-Jun-17 NO

Report Attention: Sean Connors

Tahoe Donner Association 11509 Northwoods Blvd. Truckkee, CA 96161

(530) 362-0056 田

ProjectNo: Maintenance Yard

22-May-17 Date Received:

Alpha	Client		Collection No	No. of Bottles	3ottle:	٠,		:	:	Redn	Requested Tests	
Sample ID	e ID	Matrix	Matrix Date Alpha Sub TAT OG_HEM_W TPHE_W TPHIP_W	Alpha	Sub	TAT	OG_HEM_W	трме_w	TPH/P_W	TSS_W	VOC_W	Sample Remarks
TDA1705235-01	A discharge	AQ	5/22/2017 2 00 00 PM	9	0	01	×-5	C.X A.TPHE_C A.GAS-C	A - GAS-C	B - TSS	A-8260_Cs	

No IDs, dates or times on bottles. Comments:

Signature Logged in by:

Alpha Analytical, Inc.

Company

Print Name

Date/Time

NOTE: Samples are discarded 60 days after sample receipt unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

Bottle Type: L-Liter V-Voa S-Soil Jar O-Orbo T-Tedlar B-Brass P-Plastic OT-Other

1157231 Note 21-10 Prose 77777 2 47 4765 C Fat Chin Waller Billing Information:

Llain Laboratory: 255 Glendale Ave. Suite 21 Sparks, NV 89431 Alpha Analytical, Inc.

Satellite Service Centers:

Northern CA 9891 Horn Road, Suitu C, Ruischo Cordova, CA 95827 Southern CA: 1007 E. Domerguez St., Suite O, Carson, CA 90748 Southern NV: 6255 McLead Ave., Suite 24. Lus Vegas, NV 89120 Northern NV, 1250 Lamoilla Hwy, #310, Efte, NV 89801

Phone: 775-355-1044 775-355-0406

6977

QC Deliverable info: EDD Required? Yes / No. 702-281-4848

EDF Required? Yes / No

Land of Tokund Line

Email Address

Jakish to the state to

Job Name

1.500 M. H. ... (1/2)

Samples Collected from

City, State, Zip.

John H

11.2.1

Keller Diever

Сомралу.

Address:

Consultant Client Info:

Phone Number: Crty, State, Zsp.

Company

Address:

Job and Purchase Order Info:

Report Attention/Project Manager:

775-388-7043 Phone: 916-366-9089 Phone: 714-386-2901 Phono Phone

1		Г	_
	2	Remarks	
	b		
	≡		
Global ICI	Data Validation Packages:		
2.5 76 66		Analysis Requested	7:
Phone #	4 5	10000	(Mojag
Ē	Cent		
	Other		
	DOD Site	200	
	WA	2000	
	OR		
	N		
ni j	KS		
POR	3	Chimelia	
6.1	AR	cappagaga	
125. C. YEICI	which State? (circle one) AR (CA) KS NV OR	and the second s	
-4	F 1	151	

Tame Sampsed S	Date Samples (6	Mann' (See Ker	Lab (D Number (Fox Luti Uso Only)	Sample Describion		Containers** (See Key Beig	25,417 T 110	557	57.7	113/HFT			1. 5. 1 27.		
2 pm 6/22	22/5	14G		A discharac	C.	7	×	X			+	-			
2 pm 5/27	5/27	3		1 chischurge	1	7			×	~					
									1						
											-	-			
							-					-			
											-				
											T				
						1			-	F					
											-	-			

250 ime. (field sampler) attest to the variant stands of this sample(s). I am aware that tampering with or intentionally mislabeling the eample location, date or time of collection is considered fraud and may be grounds for legal action. NAC 445.0618 (c) (2). V - VOA L-Liter O-Orbo OT-Other P-Plastic S-Soil Jar T-Tedlar tecerved by (Signature/Affiliation) Received by (Signature/Affalation) (aceived by: (Signature/Alfrication) · · B · Brass 3 PM WA - Waste argue argue So-Sod OT - Other Dale * Key; AQ - Aquoous leanquithed by (Signalue/Affication) Rehnquished by Sampled By:

MOTE: Samples are discarded 80 days after sample recept unless other anadgements are made. Hazardous samples will be returned to client or disposed of all client expense. The report for the above samples is applicable only to those samples are applicable only to those samples.

ISR DE DO

Tahoe Donner Association

Work Order

WO.#: 14109 [contaminated snow melt]

Entity Name: FACILITY / VEHICLE

Budget: 54210

Created: 5/19/2017

Status: ACTIVE

Unscheduled

MAINT Priority: 2-Standard

Assigned:

Due:

Work Type: 0400 CLEANING

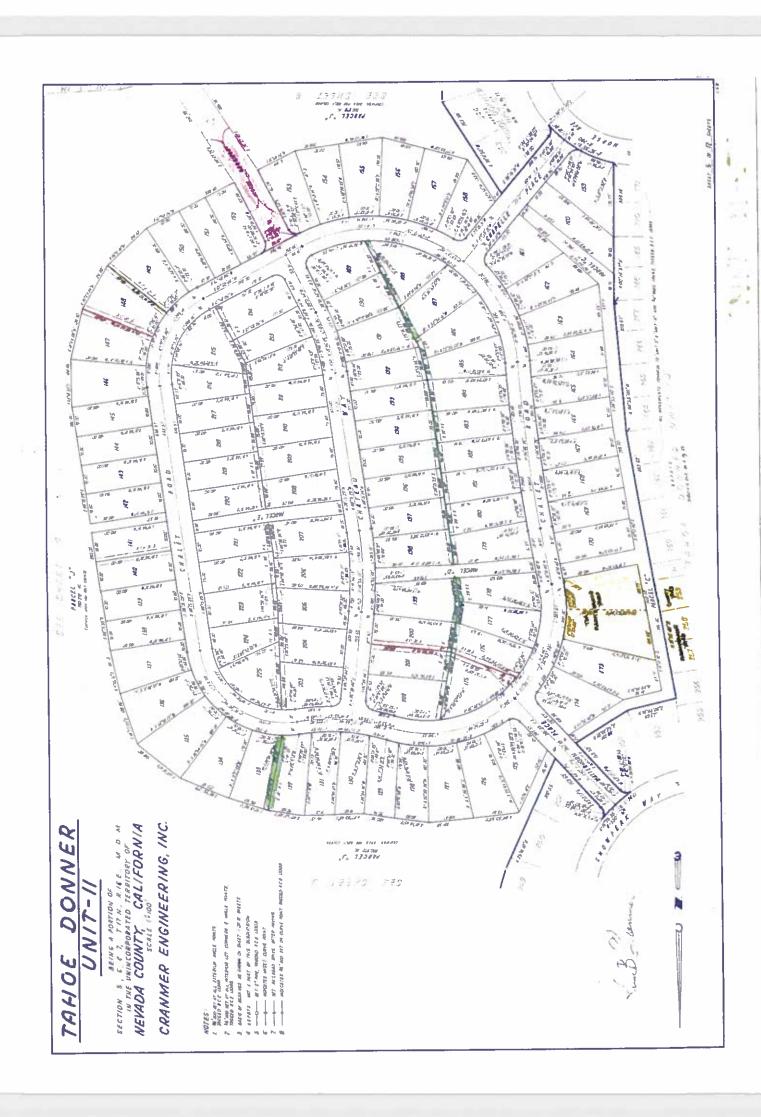
Completed:

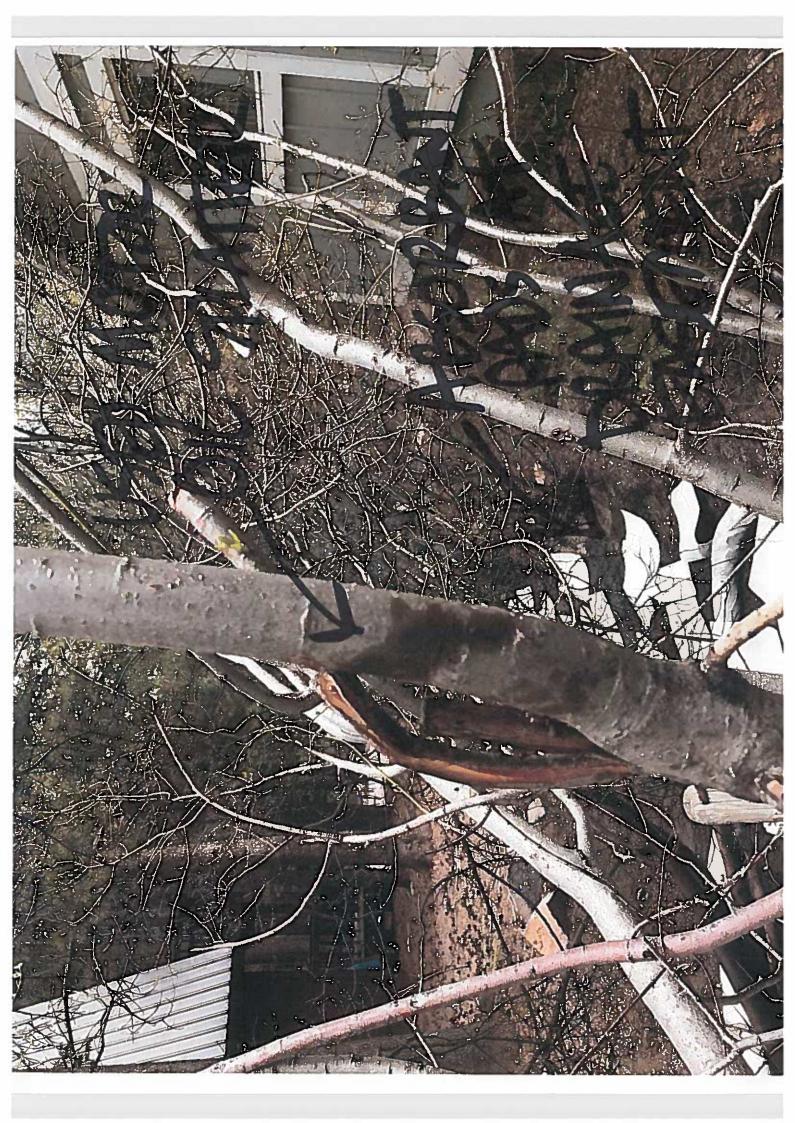
Asset ID: FACILITY / VEHICLE BUILD [14514 NORTHWOODS BLV

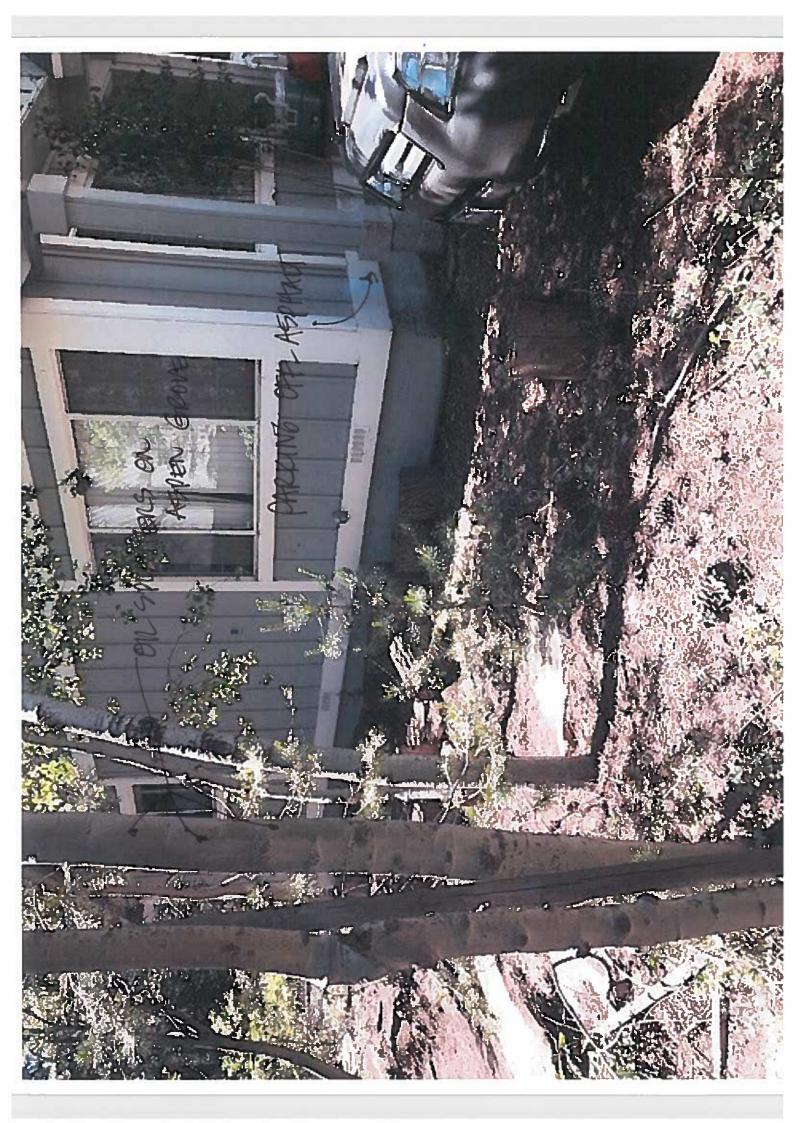
Parent Asset:

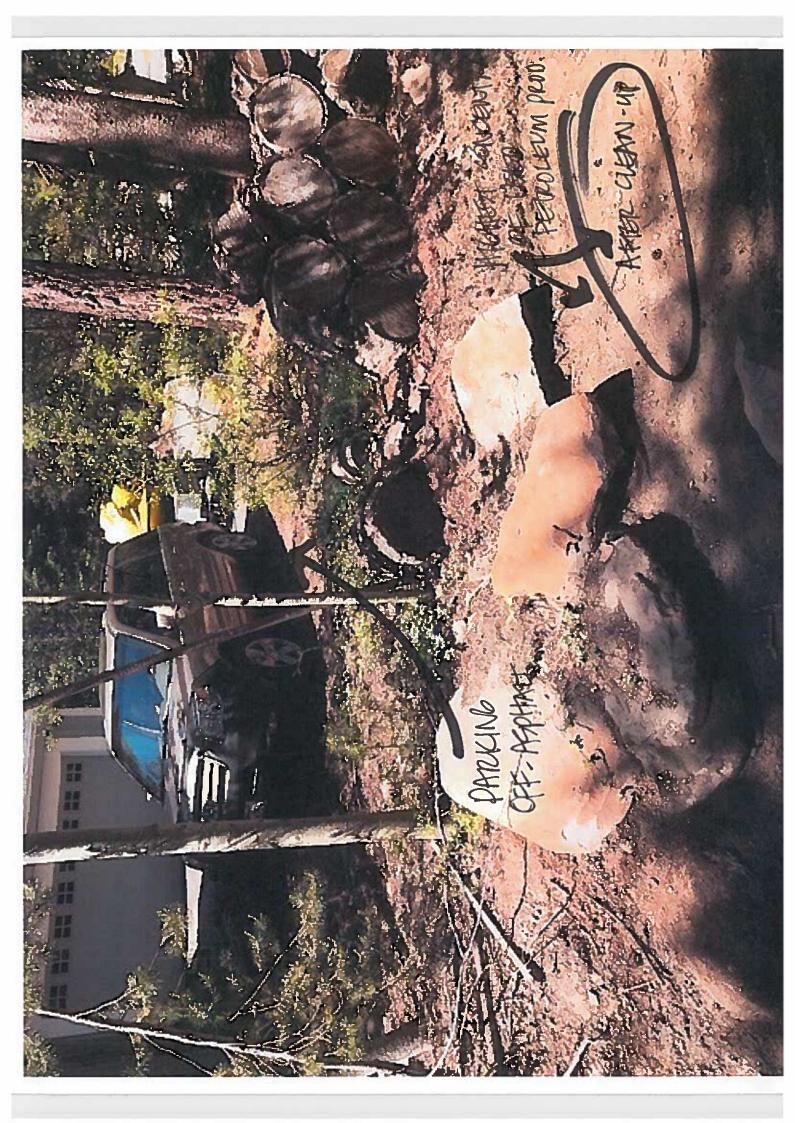
Group: 160 FACILITY / VEHICLE

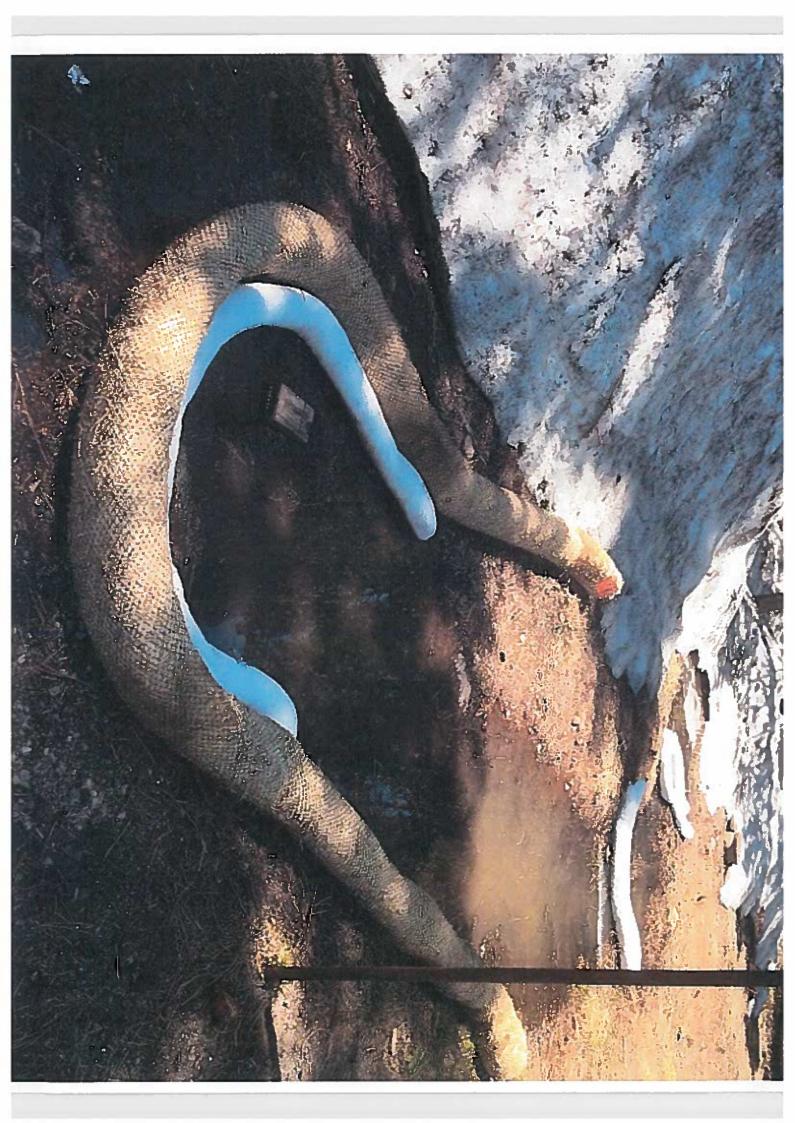
Category: STRUCTURES Type: BUILDING Status: ACTIVE


	Service Items		Sel Line	MAKE	
Service Code Serv	ce Description			Est	imated Hou
	Parts	THE RESIDENCE AND ASSESSMENT			
Part#	Location	Unit ID	Unit Cost	Quantity	Total Cos
WATTLE [WATTLES 9 " x 25]	WAREHOUSE []	EA	\$437.33	1.00	\$437.33
	Labor				1000
Contact Name	Equipme Equipme	nt Used	Hours	Labor Rate	Labor Tota
Zach Dillard			2.50	\$25.00	\$62,50
Jay Scott			2.00	\$25.00	\$50.00
Chris Lydon			2.00	\$25.00	
Javier Mora			2.00	\$25.00	\$50.00
Javier Mora			3.00	\$25.00	\$50.00
Chris Lydon			2.00		\$75.00
ENRIQUE ESPINOZA			2.00	\$25.00	\$50.00
Jay Scott			2.00	\$25.00	\$50.00
Chris Lydon				\$25.00	\$50.00
Brett McClean			2.00	\$25.00	\$50.00
ENRIQUE ESPINOZA			2.50	\$25.00	\$62.50
Ignacio Ruiz			2.50	\$25.00	\$62.50
Jay Scott			2.50	\$25.00	\$62.50
			2.50	\$25.00	\$62.50
	Notes				
Note Type Service Code Note			Modified	By Not	e Date


PARTS / INVOICES Ferguson 5382530 \$437.33 wattles MAINT SUP 5/21/2017


Part Total: \$437.33


Labor Total: \$737.50 LOADER HR USE \$19.50: \$0.00


> **Grand Total:** \$1,174.83

